Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cancer Inform ; 20: 11769351211049236, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34671179

RESUMEN

BACKGROUND: The revolution in next-generation sequencing (NGS) technology has allowed easy access and sharing of high-throughput sequencing datasets of cancer cell lines and their integrative analyses. However, long-term passaging and culture conditions introduce high levels of genomic and phenotypic diversity in established cell lines resulting in strain differences. Thus, clonal variation in cultured cell lines with respect to the reference standard is a major barrier in systems biology data analyses. Therefore, there is a pressing need for a fast and entry-level assessment of clonal variations within cell lines using their high-throughput sequencing data. RESULTS: We developed a Python-based software, AStra, for de novo estimation of the genome-wide segmental aneuploidy to measure and visually interpret strain-level similarities or differences of cancer cell lines from whole-genome sequencing (WGS). We demonstrated that aneuploidy spectrum can capture the genetic variations in 27 strains of MCF7 breast cancer cell line collected from different laboratories. Performance evaluation of AStra using several cancer sequencing datasets revealed that cancer cell lines exhibit distinct aneuploidy spectra which reflect their previously-reported karyotypic observations. Similarly, AStra successfully identified large-scale DNA copy number variations (CNVs) artificially introduced in simulated WGS datasets. CONCLUSIONS: AStra provides an analytical and visualization platform for rapid and easy comparison between different strains or between cell lines based on their aneuploidy spectra solely using the raw BAM files representing mapped reads. We recommend AStra for rapid first-pass quality assessment of cancer cell lines before integrating scientific datasets that employ deep sequencing. AStra is an open-source software and is available at https://github.com/AISKhalil/AStra.

2.
Immunity ; 54(8): 1883-1900.e5, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34331874

RESUMEN

Mononuclear phagocytes (MNPs) encompass dendritic cells, monocytes, and macrophages (MoMac), which exhibit antimicrobial, homeostatic, and immunoregulatory functions. We integrated 178,651 MNPs from 13 tissues across 41 datasets to generate a MNP single-cell RNA compendium (MNP-VERSE), a publicly available tool to map MNPs and define conserved gene signatures of MNP populations. Next, we generated a MoMac-focused compendium that revealed an array of specialized cell subsets widely distributed across multiple tissues. Specific pathological forms were expanded in cancer and inflammation. All neoplastic tissues contained conserved tumor-associated macrophage populations. In particular, we focused on IL4I1+CD274(PD-L1)+IDO1+ macrophages, which accumulated in the tumor periphery in a T cell-dependent manner via interferon-γ (IFN-γ) and CD40/CD40L-induced maturation from IFN-primed monocytes. IL4I1_Macs exhibited immunosuppressive characteristics through tryptophan degradation and promoted the entry of regulatory T cell into tumors. This integrated analysis provides a robust online-available platform for uniform annotation and dissection of specific macrophage functions in healthy and pathological states.


Asunto(s)
Células Dendríticas/inmunología , Expresión Génica/inmunología , Monocitos/inmunología , Transcriptoma/genética , Macrófagos Asociados a Tumores/inmunología , Artritis Reumatoide/inmunología , COVID-19/inmunología , Expresión Génica/genética , Perfilación de la Expresión Génica , Humanos , Interferón gamma/inmunología , L-Aminoácido Oxidasa/metabolismo , Cirrosis Hepática/inmunología , Macrófagos/inmunología , Neoplasias/inmunología , ARN Citoplasmático Pequeño/genética , Análisis de la Célula Individual , Linfocitos T Reguladores/inmunología , Transcriptoma/inmunología
3.
BMC Bioinformatics ; 21(1): 506, 2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33160308

RESUMEN

BACKGROUND: Hi-C and its variant techniques have been developed to capture the spatial organization of chromatin. Normalization of Hi-C contact map is essential for accurate modeling and interpretation of high-throughput chromatin conformation capture (3C) experiments. Hi-C correction tools were originally developed to normalize systematic biases of karyotypically normal cell lines. However, a vast majority of available Hi-C datasets are derived from cancer cell lines that carry multi-level DNA copy number variations (CNVs). CNV regions display over- or under-representation of interaction frequencies compared to CN-neutral regions. Therefore, it is necessary to remove CNV-driven bias from chromatin interaction data of cancer cell lines to generate a euploid-equivalent contact map. RESULTS: We developed the HiCNAtra framework to compute high-resolution CNV profiles from Hi-C or 3C-seq data of cancer cell lines and to correct chromatin contact maps from systematic biases including CNV-associated bias. First, we introduce a novel 'entire-fragment' counting method for better estimation of the read depth (RD) signal from Hi-C reads that recapitulates the whole-genome sequencing (WGS)-derived coverage signal. Second, HiCNAtra employs a multimodal-based hierarchical CNV calling approach, which outperformed OneD and HiNT tools, to accurately identify CNVs of cancer cell lines. Third, incorporating CNV information with other systematic biases, HiCNAtra simultaneously estimates the contribution of each bias and explicitly corrects the interaction matrix using Poisson regression. HiCNAtra normalization abolishes CNV-induced artifacts from the contact map generating a heatmap with homogeneous signal. When benchmarked against OneD, CAIC, and ICE methods using MCF7 cancer cell line, HiCNAtra-corrected heatmap achieves the least 1D signal variation without deforming the inherent chromatin interaction signal. Additionally, HiCNAtra-corrected contact frequencies have minimum correlations with each of the systematic bias sources compared to OneD's explicit method. Visual inspection of CNV profiles and contact maps of cancer cell lines reveals that HiCNAtra is the most robust Hi-C correction tool for ameliorating CNV-induced bias. CONCLUSIONS: HiCNAtra is a Hi-C-based computational tool that provides an analytical and visualization framework for DNA copy number profiling and chromatin contact map correction of karyotypically abnormal cell lines. HiCNAtra is an open-source software implemented in MATLAB and is available at https://github.com/AISKhalil/HiCNAtra .


Asunto(s)
Biología Computacional/métodos , Variaciones en el Número de Copia de ADN , Neoplasias/patología , Cromatina/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Células MCF-7 , Neoplasias/genética , Interfaz Usuario-Computador
4.
BMC Bioinformatics ; 21(1): 147, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32299346

RESUMEN

BACKGROUND: Detection of DNA copy number alterations (CNAs) is critical to understand genetic diversity, genome evolution and pathological conditions such as cancer. Cancer genomes are plagued with widespread multi-level structural aberrations of chromosomes that pose challenges to discover CNAs of different length scales, and distinct biological origins and functions. Although several computational tools are available to identify CNAs using read depth (RD) signal, they fail to distinguish between large-scale and focal alterations due to inaccurate modeling of the RD signal of cancer genomes. Additionally, RD signal is affected by overdispersion-driven biases at low coverage, which significantly inflate false detection of CNA regions. RESULTS: We have developed CNAtra framework to hierarchically discover and classify 'large-scale' and 'focal' copy number gain/loss from a single whole-genome sequencing (WGS) sample. CNAtra first utilizes a multimodal-based distribution to estimate the copy number (CN) reference from the complex RD profile of the cancer genome. We implemented Savitzky-Golay smoothing filter and Modified Varri segmentation to capture the change points of the RD signal. We then developed a CN state-driven merging algorithm to identify the large segments with distinct copy numbers. Next, we identified focal alterations in each large segment using coverage-based thresholding to mitigate the adverse effects of signal variations. Using cancer cell lines and patient datasets, we confirmed CNAtra's ability to detect and distinguish the segmental aneuploidies and focal alterations. We used realistic simulated data for benchmarking the performance of CNAtra against other single-sample detection tools, where we artificially introduced CNAs in the original cancer profiles. We found that CNAtra is superior in terms of precision, recall and f-measure. CNAtra shows the highest sensitivity of 93 and 97% for detecting large-scale and focal alterations respectively. Visual inspection of CNAs revealed that CNAtra is the most robust detection tool for low-coverage cancer data. CONCLUSIONS: CNAtra is a single-sample CNA detection tool that provides an analytical and visualization framework for CNA profiling without relying on any reference control. It can detect chromosome-level segmental aneuploidies and high-confidence focal alterations, even from low-coverage data. CNAtra is an open-source software implemented in MATLAB®. It is freely available at https://github.com/AISKhalil/CNAtra.


Asunto(s)
Algoritmos , Variaciones en el Número de Copia de ADN/genética , Neoplasias/genética , Secuenciación Completa del Genoma/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA