Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Chem Biodivers ; 21(5): e202400366, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38498805

RESUMEN

The escalating global health challenge posed by infections prompts the exploration of innovative solutions utilizing MXene-based nanostructures. Societally, the need for effective antimicrobial strategies is crucial for public health, while scientifically, MXenes present promising properties for therapeutic applications, necessitating scalable production and comprehensive characterization techniques. Here we review the versatile physicochemical properties of MXene materials for combatting microbial threats and their various synthesis methods, including etching and top-down or bottom-up techniques. Crucial characterization techniques such as XRD, Raman spectroscopy, SEM/TEM, FTIR, XPS, and BET analysis provide insightful structural and functional attributes. The review highlights MXenes' diverse antimicrobial mechanisms, spanning membrane disruption and oxidative stress induction, demonstrating efficacy against bacterial, viral, and fungal infections. Despite translational hurdles, MXene-based nanostructures offer broad-spectrum antimicrobial potential, with applications in drug delivery and diagnostics, presenting a promising path for advancing infection control in global healthcare.


Asunto(s)
Antiinfecciosos , Nanoestructuras , Nanoestructuras/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/síntesis química , Humanos , Pruebas de Sensibilidad Microbiana , Bacterias/efectos de los fármacos , Control de Infecciones , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química
2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(8): 5463-5481, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459989

RESUMEN

This review paper provides an in-depth analysis of the significance of lipid nanocarriers in drug delivery and the crucial role of characterization techniques. It explores various types of lipid nanocarriers and their applications, emphasizing the importance of microscopy-based characterization methods such as light microscopy, confocal microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The paper also delves into sample preparation, quantitative analysis, challenges, and future directions in the field. The review concludes by underlining the pivotal role of microscopy-based characterization in advancing lipid nanocarrier research and drug delivery technologies.


Asunto(s)
Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Lípidos , Nanopartículas , Portadores de Fármacos/química , Lípidos/química , Humanos , Animales , Microscopía/métodos , Microscopía de Fuerza Atómica
3.
Pathol Res Pract ; 256: 155266, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38554489

RESUMEN

Hepatic tumors present a formidable challenge in cancer therapeutics, necessitating the exploration of novel treatment strategies. In recent years, targeting the immune system has attracted interest to augment existing therapeutic efficacy. The immune system in hepatic tumors includes numerous cells with diverse actions. CD8+ T lymphocytes, T helper 1 (Th1) CD4+ T lymphocytes, alternative M1 macrophages, and natural killer (NK) cells provide the antitumor immunity. However, Foxp3+ regulatory CD4+ T cells (Tregs), M2-like tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) are the key immune inhibitor cells. Tumor stroma can also affect these interactions. Targeting these cells and their secreted molecules is intriguing for eliminating malignant cells. The current review provides a synopsis of the immune system components involved in hepatic tumor expansion and highlights the molecular and cellular pathways that can be targeted for therapeutic intervention. It also overviews the diverse range of drugs, natural products, immunotherapy drugs, and nanoparticles that have been investigated to manipulate immune responses and bolster antitumor immunity. The review also addresses the potential advantages and challenges associated with these approaches.


Asunto(s)
Productos Biológicos , Neoplasias Hepáticas , Nanopartículas , Neoplasias , Humanos , Productos Biológicos/uso terapéutico , Productos Biológicos/metabolismo , Neoplasias/patología , Inmunoterapia , Macrófagos/patología , Neoplasias Hepáticas/patología , Nanopartículas/uso terapéutico , Microambiente Tumoral
4.
EBioMedicine ; 59: 102876, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32646751

RESUMEN

BACKGROUND: Inflammation plays an important role in the development of cardiovascular disease (CVD). Patients with chronic inflammation diseases have high levels of inflammation and early fatal myocardial infarction due to early, unstable coronary plaques. Cholesterol crystals (CC) play a key role in atherogenesis. However, the underlying mechanisms of endothelial cell (EC)-derived CC formation are not well understood in chronic inflammation. METHODS: We utilized a combination of a mouse psoriasis model (K14-Rac1V12 mouse model) and human psoriasis patients to study the effect of inflammatory cytokines on CC formation in ECs. Lysosomal pH, alterations in lipid load and inflammatory proteins were evaluated as potential mechanisms linking inflammatory cytokines to CC formation. Coronary CT angiography was performed (n = 224) to characterize potential IFNγ and TNFα synergism on vascular diseases in vivo. FINDINGS: We detected CC presence in the aorta of K14-Rac1V12 mice on chow diet. IFNγ and TNFα were found to synergistically increase LDL-induced CC formation by almost 2-fold. There was an increase in lysosomal pH accompanied by a 28% loss in pH-dependent lysosomal signal and altered vATPaseV1E1 expression patterns. In parallel, we found that LDL+IFNγ/TNFα treatments increased free cholesterol content within EC and led to a decrease in SOAT-1 expression, an enzyme critically involved cholesterol homeostasis. Finally, the product of IFNγ and TNFα positively associated with early non-calcified coronary burden in patients with psoriasis (n = 224; ß = 0.28, p < 0.001). INTERPRETATION: Our results provide evidence that IFNγ and TNFα accelerate CC formation in endothelial cells in part by altering lysosomal pH and free cholesterol load. These changes promote early atherogenesis and contribute to understanding the burden of CVD in psoriasis. FUNDING: Funding was provided by the Intramural Research Program at NIH (NNM) and the National Psoriasis Foundation (NNM and YB).


Asunto(s)
Colesterol/metabolismo , Células Endoteliales/metabolismo , Hiperlipidemias/metabolismo , Interferón gamma/metabolismo , Lisosomas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Adulto , Anciano , Animales , Células Cultivadas , Colesterol/química , Citocinas/sangre , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/patología , Femenino , Citometría de Flujo , Homeostasis , Humanos , Concentración de Iones de Hidrógeno , Hiperlipidemias/sangre , Hiperlipidemias/etiología , Mediadores de Inflamación/metabolismo , Cristales Líquidos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Psoriasis/etiología , Psoriasis/metabolismo , Psoriasis/patología , Transducción de Señal
5.
J Am Acad Dermatol ; 83(6): 1647-1653, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31678339

RESUMEN

BACKGROUND: Psoriasis is associated with elevated risk of heart attack and increased accumulation of subclinical noncalcified coronary burden by coronary computed tomography angiography (CCTA). Machine learning algorithms have been shown to effectively analyze well-characterized data sets. OBJECTIVE: In this study, we used machine learning algorithms to determine the top predictors of noncalcified coronary burden by CCTA in psoriasis. METHODS: The analysis included 263 consecutive patients with 63 available variables from the Psoriasis Atherosclerosis Cardiometabolic Initiative. The random forest algorithm was used to determine the top predictors of noncalcified coronary burden by CCTA. We evaluated our results using linear regression models. RESULTS: Using the random forest algorithm, we found that the top 10 predictors of noncalcified coronary burden were body mass index, visceral adiposity, total adiposity, apolipoprotein A1, high-density lipoprotein, erythrocyte sedimentation rate, subcutaneous adiposity, small low-density lipoprotein particle, cholesterol efflux capacity and the absolute granulocyte count. Linear regression of noncalcified coronary burden yielded results consistent with our machine learning output. LIMITATION: We were unable to provide external validation and did not study cardiovascular events. CONCLUSION: Machine learning methods identified the top predictors of noncalcified coronary burden in psoriasis. These factors were related to obesity, dyslipidemia, and inflammation, showing that these are important targets when treating comorbidities in psoriasis.


Asunto(s)
Enfermedad de la Arteria Coronaria/epidemiología , Aprendizaje Automático , Psoriasis/complicaciones , Adulto , Comorbilidad , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/inmunología , Vasos Coronarios/diagnóstico por imagen , Dislipidemias/sangre , Dislipidemias/epidemiología , Dislipidemias/inmunología , Femenino , Humanos , Inflamación/sangre , Inflamación/epidemiología , Inflamación/inmunología , Masculino , Persona de Mediana Edad , Obesidad/sangre , Obesidad/epidemiología , Obesidad/inmunología , Estudios Prospectivos , Psoriasis/sangre , Psoriasis/epidemiología , Psoriasis/inmunología , Medición de Riesgo/métodos , Factores de Riesgo , Tomografía Computarizada por Rayos X
6.
JAMA Dermatol ; 156(2): 151-157, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31746956

RESUMEN

Importance: Psoriasis, a chronic inflammatory skin disease associated with accelerated noncalcified coronary burden (NCB) by coronary computed tomography angiography (CCTA), accelerates lipoprotein oxidation in the form of oxidized modified lipoproteins. A transmembrane scavenger receptor for these oxidized modified lipoproteins is lectinlike oxidized low-density lipoprotein receptor-1 (LOX-1), which has been reported to be associated with coronary artery disease. It is unknown whether this receptor is associated with coronary artery disease in psoriasis. Objective: To assess the association between soluble LOX-1 (sLOX-1) and NCB in psoriasis over time. Design, Setting, and Participants: In a cohort study at the National Institutes of Health, 175 consecutive patients with psoriasis were referred from outpatient dermatology practices between January 1, 2013, and October 1, 2017. A total of 138 consecutively recruited patients with psoriasis were followed up at 1 year. Exposures: Circulating soluble lectinlike oxidized low-density lipoprotein receptor-1 levels were measured blindly by field scientists running undiluted serum using an enzyme-linked immunosorbent assay. Main Outcomes and Measures: Coronary computed tomography angiography scans were performed to quantify NCB in all 3 major epicardial coronary arteries by a reader blinded to patient demographics, visit, and treatment status. Results: Among the 175 patients with psoriasis, the mean (SD) age was 49.7 (12.6) years and 91 were men (55%). The cohort had relatively low median cardiovascular risk by Framingham risk score (median, 2.0 [interquartile range (IQR), 1.0-6.0]) and had a mean (SD) body mass index (calculated as weight in kilograms divided by height in meters squared) suggestive of overweight profiles (29.6 [6.0]). Elevated sLOX-1 levels were found in patients with psoriasis compared with age- and sex-matched controls (median, 210.3 [IQR, 110.9-336.2] vs 83.7 [IQR, 40.1-151.0]; P < .001), and were associated with Psoriasis Area Severity Index (PASI) score (ß = 0.23; 95% CI, 0.082-0.374; P = .003). Moreover, sLOX-1 was associated with NCB independent of hyperlipidemia status (ß = 0.11; 95% CI, 0.016-0.200; P = .023), an association which persisted after adjusting for traditional cardiovascular risk factors, statin use, and biologic psoriasis treatment (ß = 0.10; 95% CI, 0.014-0.193; P = .03). At 1 year, in those who had clinical improvement in PASI (eg, >50% improvement), a reduction in sLOX-1 (median, 311.1 [IQR, 160.0-648.8] vs median, 224.2 [IQR, 149.1 - 427.4]; P = .01) was associated with a reduction in NCB (ß = 0.14; 95% CI, 0.028-0.246; P = .02). Conclusions and Relevance: Soluble lectinlike oxidized low-density lipoprotein receptor-1 levels were elevated in patients with psoriasis and were associated with severity of skin disease. Moreover, sLOX-1 associated with NCB independent of hyperlipidemia status, suggesting that inflammatory sLOX-1 induction may modulate lipid-rich NCB in psoriasis. Improvement of skin disease was associated with a reduction of sLOX-1 at 1 year, demonstrating the potential role of sLOX-1 in inflammatory atherogenesis in psoriasis.


Asunto(s)
Angiografía por Tomografía Computarizada , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Psoriasis/complicaciones , Receptores Depuradores de Clase E/sangre , Adulto , Estudios de Cohortes , Enfermedad de la Arteria Coronaria/sangre , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Psoriasis/patología , Índice de Severidad de la Enfermedad , Factores de Tiempo
7.
ACS Biomater Sci Eng ; 4(1): 231-239, 2018 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-29333491

RESUMEN

The three-dimensional (3D) cultivation of intestinal cells and tissues in dynamic bioreactor systems to represent in vivo intestinal microenvironments is essential for developing regenerative medicine treatments for intestinal diseases. We have previously developed in vitro human intestinal tissue systems using a 3D porous silk scaffold system with intestinal architectures and topographical features for the adhesion, growth, and differentiation of intestinal cells under static culture conditions. In this study, we designed and fabricated a multifunctional bioreactor system that incorporates pre-epithelialized 3D silk scaffolds in a dynamic culture environment for in vitro engineering of human intestine tissues. The bioreactor system allows for control of oxygen levels in perfusion fluids (aerobic simulated intestinal fluid (SIF), microaerobic SIF, and anaerobic SIF), while ensuring control over the mechanical and chemical microenvironments present in native human intestines. The bioreactor system also enables 3D cell culture with spatial separation and cultivation of cocultured epithelial and stromal cells. Preliminary functional analysis of tissues housed in the bioreactor demonstrated that the 3D tissue constructs survived and maintained typical phenotypes of intestinal epithelium, including epithelial tight junction formation, intestinal biomarker expression, microvilli formation, and mucus secretion. The unique combination of a dynamic bioreactor and 3D intestinal constructs offers utility for engineering human intestinal tissues for the study of intestinal diseases and discovery options for new treatments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA