Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Comput Intell Neurosci ; 2022: 9576468, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814586

RESUMEN

In recent years, the application of various recommendation algorithms on over-the-top (OTT) platforms such as Amazon Prime and Netflix has been explored, but the existing recommendation systems are less effective because either they fail to take an advantage of exploiting the inherent user relationship or they are not capable of precisely defining the user relationship. On such platforms, users generally express their preferences for movies and TV shows and also give ratings to them. For a recommendation system to be effective, it is important to establish an accurate and precise relationship between the users. Hence, there is a scope of research for effective recommendation systems that can define a relationship between users and then use the relationship to enhance the user experiences. In this research article, we have presented a hybrid recommendation system that determines the degree of friendship among the viewers based on mutual liking and recommendations on OTT platforms. The proposed enhanced model is an effective recommendation model for determining the degree of friendship among viewers with improved user experience.


Asunto(s)
Algoritmos , Amigos , Humanos , Películas Cinematográficas
2.
Sensors (Basel) ; 22(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35890962

RESUMEN

With the rapid development of deep learning techniques, new innovative license plate recognition systems have gained considerable attention from researchers all over the world. These systems have numerous applications, such as law enforcement, parking lot management, toll terminals, traffic regulation, etc. At present, most of these systems rely heavily on high-end computing resources. This paper proposes a novel memory and time-efficient automatic license plate recognition (ALPR) system developed using YOLOv5. This approach is ideal for IoT devices that usually have less memory and processing power. Our approach incorporates two stages, i.e., using a custom transfer learned model for license plate detection and an LSTM-based OCR engine for recognition. The dataset that we used for this research was our dataset consisting of images from the Google open images dataset and the Indian License plate dataset. Along with training YOLOv5 models, we also trained YOLOv4 models on the same dataset to illustrate the size and performance-wise comparison. Our proposed ALPR system results in a 14 megabytes model with a mean average precision of 87.2% and 4.8 ms testing time on still images using Nvidia T4 GPU. The complete system with detection and recognition on the other hand takes about 85 milliseconds.


Asunto(s)
Algoritmos , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA