Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38604736

RESUMEN

BACKGROUND AND PURPOSE: Molecular biomarker identification increasingly influences the treatment planning of pediatric low-grade neuroepithelial tumors (PLGNTs). We aimed to develop and validate a radiomics-based ADC signature predictive of the molecular status of PLGNTs. MATERIALS AND METHODS: In this retrospective bi-institutional study, we searched the PACS for baseline brain MRIs from children with PLGNTs. Semiautomated tumor segmentation on ADC maps was performed using the semiautomated level tracing effect tool with 3D Slicer. Clinical variables, including age, sex, and tumor location, were collected from chart review. The molecular status of tumors was derived from biopsy. Multiclass random forests were used to predict the molecular status and fine-tuned using a grid search on the validation sets. Models were evaluated using independent and unseen test sets based on the combined data, and the area under the receiver operating characteristic curve (AUC) was calculated for the prediction of 3 classes: KIAA1549-BRAF fusion, BRAF V600E mutation, and non-BRAF cohorts. Experiments were repeated 100 times using different random data splits and model initializations to ensure reproducible results. RESULTS: Two hundred ninety-nine children from the first institution and 23 children from the second institution were included (53.6% male; mean, age 8.01 years; 51.8% supratentorial; 52.2% with KIAA1549-BRAF fusion). For the 3-class prediction using radiomics features only, the average test AUC was 0.74 (95% CI, 0.73-0.75), and using clinical features only, the average test AUC was 0.67 (95% CI, 0.66-0.68). The combination of both radiomics and clinical features improved the AUC to 0.77 (95% CI, 0.75-0.77). The diagnostic performance of the per-class test AUC was higher in identifying KIAA1549-BRAF fusion tumors among the other subgroups (AUC = 0.81 for the combined radiomics and clinical features versus 0.75 and 0.74 for BRAF V600E mutation and non-BRAF, respectively). CONCLUSIONS: ADC values of tumor segmentations have differentiative signals that can be used for training machine learning classifiers for molecular biomarker identification of PLGNTs. ADC-based pretherapeutic differentiation of the BRAF status of PLGNTs has the potential to avoid invasive tumor biopsy and enable earlier initiation of targeted therapy.

2.
Can Assoc Radiol J ; : 8465371241231577, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538619

RESUMEN

Purpose: Scoliosis is a complex spine deformity with direct functional and cosmetic impacts on the individual. The reference standard for assessing scoliosis severity is the Cobb angle which is measured on radiographs by human specialists, carrying interobserver variability and inaccuracy of measurements. These limitations may result in lack of timely referral for management at a time the scoliotic deformity progression can be saved from surgery. We aimed to create a machine learning (ML) model for automatic calculation of Cobb angles on 3-foot standing spine radiographs of children and adolescents with clinical suspicion of scoliosis across 2 clinical scenarios (idiopathic, group 1 and congenital scoliosis, group 2). Methods: We retrospectively measured Cobb angles of 130 patients who had a 3-foot spine radiograph for scoliosis within a 10-year period for either idiopathic or congenital anomaly scoliosis. Cobb angles were measured both manually by radiologists and by an ML pipeline (segmentation-based approach-Augmented U-Net model with non-square kernels). Results: Our Augmented U-Net architecture achieved a Symmetric Mean Absolute Percentage Error (SMAPE) of 11.82% amongst a combined idiopathic and congenital scoliosis cohort. When stratifying for idiopathic and congenital scoliosis individually a SMAPE of 13.02% and 11.90% were achieved, respectively. Conclusion: The ML model used in this study is promising at providing automated Cobb angle measurement in both idiopathic scoliosis and congenital scoliosis. Nevertheless, larger studies are needed in the future to confirm the results of this study prior to translation of this ML algorithm into clinical practice.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38521092

RESUMEN

BACKGROUND AND PURPOSE: Interest in artificial intelligence (AI) and machine learning (ML) has been growing in neuroradiology, but there is limited knowledge on how this interest has manifested into research and specifically, its qualities and characteristics. This study aims to characterize the emergence and evolution of AI/ML articles within neuroradiology and provide a comprehensive overview of the trends, challenges, and future directions of the field. MATERIALS AND METHODS: We performed a bibliometric analysis of the American Journal of Neuroradiology (AJNR): the journal was queried for original research articles published since inception (Jan. 1, 1980) to Dec. 3, 2022 that contained any of the following key terms: "machine learning", "artificial intelligence", "radiomics", "deep learning", "neural network", "generative adversarial network", "object detection", or "natural language processing". Articles were screened by two independent reviewers, and categorized into Statistical Modelling (Type 1), AI/ML Development (Type 2), both representing developmental research work but without a direct clinical integration, or End-user Application (Type 3) which is the closest surrogate of potential AI/ML integration into day-to-day practice. To better understand the limiting factors to Type 3 articles being published, we analyzed Type 2 articles as they should represent the precursor work leading to Type 3. RESULTS: A total of 182 articles were identified with 79% being non-integration focused (Type 1 n = 53, Type 2 n = 90) and 21% (n = 39) being Type 3. The total number of articles published grew roughly five-fold in the last five years, with the non-integration focused articles mainly driving this growth. Additionally, a minority of Type 2 articles addressed bias (22%) and explainability (16%). These articles were primarily led by radiologists (63%), with most of them (60%) having additional postgraduate degrees. CONCLUSIONS: AI/ML publications have been rapidly increasing in neuroradiology with only a minority of this growth being attributable to end-user application. Areas identified for improvement include enhancing the quality of Type 2 articles, namely external validation, and addressing both bias and explainability. These results ultimately provide authors, editors, clinicians, and policymakers important insights to promote a shift towards integrating practical AI/ML solutions in neuroradiology. ABBREVIATIONS: AI = artificial intelligence; ML = machine learning.

4.
AJNR Am J Neuroradiol ; 45(5): 549-553, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38176730

RESUMEN

This paper will review how artificial intelligence (AI) will play an increasingly important role in pediatric neuroradiology in the future. A safe, transparent, and human-centric AI is needed to tackle the quadruple aim of improved health outcomes, enhanced patient and family experience, reduced costs, and improved well-being of the healthcare team in pediatric neuroradiology. Equity, diversity and inclusion, data safety, and access to care will need to always be considered. In the next decade, AI algorithms are expected to play an increasingly important role in access to care, workflow management, abnormality detection, classification, response prediction, prognostication, report generation, as well as in the patient and family experience in pediatric neuroradiology. Also, AI algorithms will likely play a role in recognizing and flagging rare diseases and in pattern recognition to identify previously unknown disorders. While AI algorithms will play an important role, humans will not only need to be in the loop, but in the center of pediatric neuroimaging. AI development and deployment will need to be closely watched and monitored by experts in the field. Patient and data safety need to be at the forefront, and the risks of a dependency on technology will need to be contained. The applications and implications of AI in pediatric neuroradiology will differ from adult neuroradiology.


Asunto(s)
Inteligencia Artificial , Predicción , Pediatría , Humanos , Niño , Pediatría/métodos , Neuroimagen/métodos , Neurorradiografía
5.
Eur Radiol ; 34(4): 2772-2781, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37803212

RESUMEN

OBJECTIVES: Currently, the BRAF status of pediatric low-grade glioma (pLGG) patients is determined through a biopsy. We established a nomogram to predict BRAF status non-invasively using clinical and radiomic factors. Additionally, we assessed an advanced thresholding method to provide only high-confidence predictions for the molecular subtype. Finally, we tested whether radiomic features provide additional predictive information for this classification task, beyond that which is embedded in the location of the tumor. METHODS: Random forest (RF) models were trained on radiomic and clinical features both separately and together, to evaluate the utility of each feature set. Instead of using the traditional single threshold technique to convert the model outputs to class predictions, we implemented a double threshold mechanism that accounted for uncertainty. Additionally, a linear model was trained and depicted graphically as a nomogram. RESULTS: The combined RF (AUC: 0.925) outperformed the RFs trained on radiomic (AUC: 0.863) or clinical (AUC: 0.889) features alone. The linear model had a comparable AUC (0.916), despite its lower complexity. Traditional thresholding produced an accuracy of 84.5%, while the double threshold approach yielded 92.2% accuracy on the 80.7% of patients with the highest confidence predictions. CONCLUSION: Models that included radiomic features outperformed, underscoring their importance for the prediction of BRAF status. A linear model performed similarly to RF but with the added benefit that it can be visualized as a nomogram, improving the explainability of the model. The double threshold technique was able to identify uncertain predictions, enhancing the clinical utility of the model. CLINICAL RELEVANCE STATEMENT: Radiomic features and tumor location are both predictive of BRAF status in pLGG patients. We show that they contain complementary information and depict the optimal model as a nomogram, which can be used as a non-invasive alternative to biopsy. KEY POINTS: • Radiomic features provide additional predictive information for the determination of the molecular subtype of pediatric low-grade gliomas patients, beyond what is embedded in the location of the tumor, which has an established relationship with genetic status. • An advanced thresholding method can help to distinguish cases where machine learning models have a high chance of being (in)correct, improving the utility of these models. • A simple linear model performs similarly to a more powerful random forest model at classifying the molecular subtype of pediatric low-grade gliomas but has the added benefit that it can be converted into a nomogram, which may facilitate clinical implementation by improving the explainability of the model.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Niño , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Encefálicas/patología , Radiómica , Estudios Retrospectivos , Glioma/patología
6.
Can Assoc Radiol J ; 75(1): 153-160, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37401906

RESUMEN

Purpose: MRI-based radiomics models can predict genetic markers in pediatric low-grade glioma (pLGG). These models usually require tumour segmentation, which is tedious and time consuming if done manually. We propose a deep learning (DL) model to automate tumour segmentation and build an end-to-end radiomics-based pipeline for pLGG classification. Methods: The proposed architecture is a 2-step U-Net based DL network. The first U-Net is trained on downsampled images to locate the tumour. The second U-Net is trained using image patches centred around the located tumour to produce more refined segmentations. The segmented tumour is then fed into a radiomics-based model to predict the genetic marker of the tumour. Results: Our segmentation model achieved a correlation value of over 80% for all volume-related radiomic features and an average Dice score of .795 in test cases. Feeding the auto-segmentation results into a radiomics model resulted in a mean area under the ROC curve (AUC) of .843, with 95% confidence interval (CI) [.78-.906] and .730, with 95% CI [.671-.789] on the test set for 2-class (BRAF V600E mutation BRAF fusion) and 3-class (BRAF V600E mutation BRAF fusion and Other) classification, respectively. This result was comparable to the AUC of .874, 95% CI [.829-.919] and .758, 95% CI [.724-.792] for the radiomics model trained and tested on the manual segmentations in 2-class and 3-class classification scenarios, respectively. Conclusion: The proposed end-to-end pipeline for pLGG segmentation and classification produced results comparable to manual segmentation when it was used for a radiomics-based genetic marker prediction model.


Asunto(s)
Glioma , Proteínas Proto-Oncogénicas B-raf , Humanos , Niño , Marcadores Genéticos , Glioma/patología , Imagen por Resonancia Magnética/métodos , Área Bajo la Curva
7.
ACS Appl Nano Mater ; 6(17): 15385-15396, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37706067

RESUMEN

Characterizing complex biofluids using surface-enhanced Raman spectroscopy (SERS) coupled with machine learning (ML) has been proposed as a powerful tool for point-of-care detection of clinical disease. ML is well-suited to categorizing otherwise uninterpretable, patient-derived SERS spectra that contain a multitude of low concentration, disease-specific molecular biomarkers among a dense spectral background of biological molecules. However, ML can generate false, non-generalizable models when data sets used for model training are inadequate. It is thus critical to determine how different SERS experimental methodologies and workflow parameters can potentially impact ML disease classification of clinical samples. In this study, a label-free, broadband, Ag nanoparticle-based SERS platform was coupled with ML to assess simulated clinical samples for cardiovascular disease (CVD), containing randomized combinations of five key CVD biomarkers at clinically relevant concentrations in serum. Raman spectra obtained at 532, 633, and 785 nm from up to 300 unique samples were classified into physiological and pathological categories using two standard ML models. Label-free SERS and ML could correctly classify randomized CVD samples with high accuracies of up to 90.0% at 532 nm using as few as 200 training samples. Spectra obtained at 532 nm produced the highest accuracies with no significant increase achieved using multiwavelength SERS. Sample preparation and measurement methodologies (e.g., different SERS substrate lots, sample volumes, sample sizes, and known variations in randomization and experimental handling) were shown to strongly influence the ML classification and could artificially increase classification accuracies by as much as 27%. This detailed investigation into the proper application of ML techniques for CVD classification can lead to improved data set acquisition required for the SERS community, such that ML on labeled and robust SERS data sets can be practically applied for future point-of-care testing in patients.

8.
Front Public Health ; 11: 968319, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36908403

RESUMEN

In this work, we examine magnetic resonance imaging (MRI) and ultrasound (US) appointments at the Diagnostic Imaging (DI) department of a pediatric hospital to discover possible relationships between selected patient features and no-show or long waiting room time endpoints. The chosen features include age, sex, income, distance from the hospital, percentage of non-English speakers in a postal code, percentage of single caregivers in a postal code, appointment time slot (morning, afternoon, evening), and day of the week (Monday to Sunday). We trained univariate Logistic Regression (LR) models using the training sets and identified predictive (significant) features that remained significant in the test sets. We also implemented multivariate Random Forest (RF) models to predict the endpoints. We achieved Area Under the Receiver Operating Characteristic Curve (AUC) of 0.82 and 0.73 for predicting no-show and long waiting room time endpoints, respectively. The univariate LR analysis on DI appointments uncovered the effect of the time of appointment during the day/week, and patients' demographics such as income and the number of caregivers on the no-shows and long waiting room time endpoints. For predicting no-show, we found age, time slot, and percentage of single caregiver to be the most critical contributors. Age, distance, and percentage of non-English speakers were the most important features for our long waiting room time prediction models. We found no sex discrimination among the scheduled pediatric DI appointments. Nonetheless, inequities based on patient features such as low income and language barrier did exist.


Asunto(s)
Citas y Horarios , Imagen por Resonancia Magnética , Humanos , Niño , Imagen por Resonancia Magnética/métodos , Modelos Logísticos , Hospitales , Aprendizaje Automático
9.
Can Assoc Radiol J ; 74(4): 667-675, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36949410

RESUMEN

Purpose: Scoliosis is a deformity of the spine, and as a measure of scoliosis severity, Cobb angle is fundamental to the diagnosis of deformities that require treatment. Conventional Cobb angle measurement and assessment is usually done manually, which is inherently time-consuming, and associated with high inter- and intra-observer variability. While there exist automatic scoliosis measurement methods, they suffer from insufficient accuracy. In this work, we propose a two-step segmentation-based deep learning architecture to automate Cobb angle measurement for scoliosis assessment using X-Ray images. Methods: The proposed architecture involves two steps. In the first step, we utilize a novel Augmented U-Net architecture to generate segmentations of vertebrae. The second step includes a non-learning-based pipeline to extract landmark coordinates from the segmented vertebrae and filter undesirable landmarks. Results: Our proposed Augmented U-Net architecture achieved a Symmetric Mean Absolute Percentage Error of 9.2%, with approximately 90% of estimations having less than 10 degrees difference compared with the AASCE-MICCAI challenge 2019 dataset ground truths. We further validated the model using an internal dataset and achieved almost the same level of performance. Conclusion: The proposed architecture is robust in providing automated spinal vertebrae segmentations and Cobb angle measurement, and is potentially generalizable to real-world clinical settings.


Asunto(s)
Escoliosis , Humanos , Adolescente , Escoliosis/diagnóstico por imagen , Columna Vertebral , Variaciones Dependientes del Observador , Reproducibilidad de los Resultados
10.
Can Assoc Radiol J ; 74(3): 526-533, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36475925

RESUMEN

Deep learning techniques using convolutional neural networks (CNNs) have been successfully developed for various medical image analysis tasks. However, the skills to understand and develop deep learning models are not usually taught during radiology training, which constitutes a barrier for radiologists looking to integrate machine learning (ML) into their research or clinical practice. In this work, we developed and evaluated an educational graphical user interface (GUI) to construct CNNs for teaching deep learning concepts to radiology trainees. The GUI was developed in Python using the PyQt and PyTorch frameworks. The functionality of the GUI was demonstrated through a binary classification task on a dataset of MR images of the brain. The usability of the GUI was assessed through 45-min user testing sessions with 5 neuroradiologists and neuroradiology fellows, assessing mean task completion times, the System Usability Scale (SUS), and a qualitative questionnaire as metrics. Task completion times were compared against a ML expert who performed the same tasks. After a 20-min introduction to CNNs and a walkthrough of the GUI, users were able to perform all assigned tasks successfully. There was no significant difference in task completion time compared to a ML expert. The educational GUI achieved a score of 82.5 on the SUS, suggesting that the system is highly usable. Users indicated that the GUI seems useful as an educational tool to teach ML topics to radiology trainees. An educational GUI allows interactive teaching in ML that can be incorporated into radiology training.


Asunto(s)
Inteligencia Artificial , Radiología , Humanos , Redes Neurales de la Computación , Radiografía , Radiología/métodos , Aprendizaje Automático
11.
Can Assoc Radiol J ; 74(1): 119-126, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35768942

RESUMEN

Purpose: Biopsy-based assessment of H3 K27 M status helps in predicting survival, but biopsy is usually limited to unusual presentations and clinical trials. We aimed to evaluate whether radiomics can serve as prognostic marker to stratify diffuse intrinsic pontine glioma (DIPG) subsets. Methods: In this retrospective study, diagnostic brain MRIs of children with DIPG were analyzed. Radiomic features were extracted from tumor segmentations and data were split into training/testing sets (80:20). A conditional survival forest model was applied to predict progression-free survival (PFS) using training data. The trained model was validated on the test data, and concordances were calculated for PFS. Experiments were repeated 100 times using randomized versions of the respective percentage of the training/test data. Results: A total of 89 patients were identified (48 females, 53.9%). Median age at time of diagnosis was 6.64 years (range: 1-16.9 years) and median PFS was 8 months (range: 1-84 months). Molecular data were available for 26 patients (29.2%) (1 wild type, 3 K27M-H3.1, 22 K27M-H3.3). Radiomic features of FLAIR and nonenhanced T1-weighted sequences were predictive of PFS. The best FLAIR radiomics model yielded a concordance of .87 [95% CI: .86-.88] at 4 months PFS. The best T1-weighted radiomics model yielded a concordance of .82 [95% CI: .8-.84] at 4 months PFS. The best combined FLAIR + T1-weighted radiomics model yielded a concordance of .74 [95% CI: .71-.77] at 3 months PFS. The predominant predictive radiomic feature matrix was gray-level size-zone. Conclusion: MRI-based radiomics may predict progression-free survival in pediatric diffuse midline glioma/diffuse intrinsic pontine glioma.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Femenino , Humanos , Niño , Supervivencia sin Progresión , Estudios Retrospectivos , Glioma/diagnóstico por imagen , Glioma/patología , Imagen por Resonancia Magnética , Neoplasias del Tronco Encefálico/diagnóstico por imagen
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2119-2122, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086055

RESUMEN

Brain tumor segmentation is a critical task for tumor volumetric analyses and AI algorithms. However, it is a time-consuming process and requires neuroradiology expertise. While there has been extensive research focused on optimizing brain tumor segmentation in the adult population, studies on AI guided pediatric tumor segmentation are scarce. Furthermore, MRI signal characteristics of pediatric and adult brain tumors differ, necessitating the development of segmentation algorithms specifically designed for pediatric brain tumors. We developed a segmentation model trained on magnetic resonance imaging (MRI) of pediatric patients with low-grade gliomas (pLGGs) from The Hospital for Sick Children (Toronto, Ontario, Canada). The proposed model utilizes deep Multitask Learning (dMTL) by adding tumor's genetic alteration classifier as an auxiliary task to the main network, ultimately improving the accuracy of the segmentation results.


Asunto(s)
Neoplasias Encefálicas , Glioma , Adulto , Algoritmos , Neoplasias Encefálicas/diagnóstico por imagen , Canadá , Niño , Glioma/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos
13.
Pediatr Radiol ; 52(11): 2111-2119, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35790559

RESUMEN

The integration of human and machine intelligence promises to profoundly change the practice of medicine. The rapidly increasing adoption of artificial intelligence (AI) solutions highlights its potential to streamline physician work and optimize clinical decision-making, also in the field of pediatric radiology. Large imaging databases are necessary for training, validating and testing these algorithms. To better promote data accessibility in multi-institutional AI-enabled radiologic research, these databases centralize the large volumes of data required to effect accurate models and outcome predictions. However, such undertakings must consider the sensitivity of patient information and therefore utilize requisite data governance measures to safeguard data privacy and security, to recognize and mitigate the effects of bias and to promote ethical use. In this article we define data stewardship and data governance, review their key considerations and applicability to radiologic research in the pediatric context, and consider the associated best practices along with the ramifications of poorly executed data governance. We summarize several adaptable data governance frameworks and describe strategies for their implementation in the form of distributed and centralized approaches to data management.


Asunto(s)
Inteligencia Artificial , Radiología , Algoritmos , Niño , Bases de Datos Factuales , Humanos , Radiólogos , Radiología/métodos
14.
J Med Internet Res ; 24(7): e37142, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35731966

RESUMEN

BACKGROUND: The COVID-19 pandemic has affected the lives of people globally for over 2 years. Changes in lifestyles due to the pandemic may cause psychosocial stressors for individuals and could lead to mental health problems. To provide high-quality mental health support, health care organizations need to identify COVID-19-specific stressors and monitor the trends in the prevalence of those stressors. OBJECTIVE: This study aims to apply natural language processing (NLP) techniques to social media data to identify the psychosocial stressors during the COVID-19 pandemic and to analyze the trend in the prevalence of these stressors at different stages of the pandemic. METHODS: We obtained a data set of 9266 Reddit posts from the subreddit \rCOVID19_support, from February 14, 2020, to July 19, 2021. We used the latent Dirichlet allocation (LDA) topic model to identify the topics that were mentioned on the subreddit and analyzed the trends in the prevalence of the topics. Lexicons were created for each of the topics and were used to identify the topics of each post. The prevalences of topics identified by the LDA and lexicon approaches were compared. RESULTS: The LDA model identified 6 topics from the data set: (1) "fear of coronavirus," (2) "problems related to social relationships," (3) "mental health symptoms," (4) "family problems," (5) "educational and occupational problems," and (6) "uncertainty on the development of pandemic." According to the results, there was a significant decline in the number of posts about the "fear of coronavirus" after vaccine distribution started. This suggests that the distribution of vaccines may have reduced the perceived risks of coronavirus. The prevalence of discussions on the uncertainty about the pandemic did not decline with the increase in the vaccinated population. In April 2021, when the Delta variant became prevalent in the United States, there was a significant increase in the number of posts about the uncertainty of pandemic development but no obvious effects on the topic of fear of the coronavirus. CONCLUSIONS: We created a dashboard to visualize the trend in the prevalence of topics about COVID-19-related stressors being discussed on a social media platform (Reddit). Our results provide insights into the prevalence of pandemic-related stressors during different stages of the COVID-19 pandemic. The NLP techniques leveraged in this study could also be applied to analyze event-specific stressors in the future.


Asunto(s)
COVID-19 , Análisis de Clases Latentes , Procesamiento de Lenguaje Natural , Pandemias , Medios de Comunicación Sociales , Estrés Psicológico , COVID-19/epidemiología , Humanos , Salud Mental/estadística & datos numéricos , Prevalencia , SARS-CoV-2 , Estrés Psicológico/epidemiología , Estados Unidos/epidemiología
15.
Front Radiol ; 2: 991683, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37492678

RESUMEN

As deep learning is widely used in the radiology field, the explainability of Artificial Intelligence (AI) models is becoming increasingly essential to gain clinicians' trust when using the models for diagnosis. In this research, three experiment sets were conducted with a U-Net architecture to improve the disease classification performance while enhancing the heatmaps corresponding to the model's focus through incorporating heatmap generators during training. All experiments used the dataset that contained chest radiographs, associated labels from one of the three conditions ["normal", "congestive heart failure (CHF)", and "pneumonia"], and numerical information regarding a radiologist's eye-gaze coordinates on the images. The paper that introduced this dataset developed a U-Net model, which was treated as the baseline model for this research, to show how the eye-gaze data can be used in multi-modal training for explainability improvement and disease classification. To compare the classification performances among this research's three experiment sets and the baseline model, the 95% confidence intervals (CI) of the area under the receiver operating characteristic curve (AUC) were measured. The best method achieved an AUC of 0.913 with a 95% CI of [0.860, 0.966]. "Pneumonia" and "CHF" classes, which the baseline model struggled the most to classify, had the greatest improvements, resulting in AUCs of 0.859 with a 95% CI of [0.732, 0.957] and 0.962 with a 95% CI of [0.933, 0.989], respectively. The decoder of the U-Net for the best-performing proposed method generated heatmaps that highlight the determining image parts in model classifications. These predicted heatmaps, which can be used for the explainability of the model, also improved to align well with the radiologist's eye-gaze data. Hence, this work showed that incorporating heatmap generators and eye-gaze information into training can simultaneously improve disease classification and provide explainable visuals that align well with how the radiologist viewed the chest radiographs when making diagnosis.

16.
Front Radiol ; 2: 1061402, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37492689

RESUMEN

With the increased reliance on medical imaging, Deep convolutional neural networks (CNNs) have become an essential tool in the medical imaging-based computer-aided diagnostic pipelines. However, training accurate and reliable classification models often require large fine-grained annotated datasets. To alleviate this, weakly-supervised methods can be used to obtain local information such as region of interest from global labels. This work proposes a weakly-supervised pipeline to extract Relevance Maps of medical images from pre-trained 3D classification models using localized perturbations. The extracted Relevance Map describes a given region's importance to the classification model and produces the segmentation for the region. Furthermore, we propose a novel optimal perturbation generation method that exploits 3D superpixels to find the most relevant area for a given classification using U-net architecture. This model is trained with perturbation loss, which maximizes the difference between unperturbed and perturbed predictions. We validated the effectiveness of our methodology by applying it to the segmentation of Glioma brain tumours in MRI scans using only classification labels for glioma type. The proposed method outperforms existing methods in both Dice Similarity Coefficient for segmentation and resolution for visualizations.

18.
Front Artif Intell ; 4: 582928, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917933

RESUMEN

Receiver operating characteristic (ROC) curve is an informative tool in binary classification and Area Under ROC Curve (AUC) is a popular metric for reporting performance of binary classifiers. In this paper, first we present a comprehensive review of ROC curve and AUC metric. Next, we propose a modified version of AUC that takes confidence of the model into account and at the same time, incorporates AUC into Binary Cross Entropy (BCE) loss used for training a Convolutional neural Network for classification tasks. We demonstrate this on three datasets: MNIST, prostate MRI, and brain MRI. Furthermore, we have published GenuineAI, a new python library, which provides the functions for conventional AUC and the proposed modified AUC along with metrics including sensitivity, specificity, recall, precision, and F1 for each point of the ROC curve.

19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3774-3778, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892057

RESUMEN

Recent advances in Deep Learning have led to the development of supervised models to detect anomalies in medical images such as pneumonia in chest X-rays. Automatic detection of such anomalies can help clinicians with faster decision making and treatment planning for patients. Nonetheless, supervised models require complete labeled training data with all possible labels (i.e., positive and negative), which are cumbersome and expensive to obtain. We propose an adversarial learning-based semi-supervised algorithm for anomaly detection, which requires training data only with a single class (positive or negative). We applied our proposed Generative Adversarial Network architecture to detect anomalies and score pneumonia in chest X-rays and achieved statistically significant improvements compared to previous state-of-the-art generative network and one-class classifiers for anomaly detection.


Asunto(s)
Algoritmos , Neumonía , Humanos , Neumonía/diagnóstico por imagen , Radiografía , Rayos X
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3817-3822, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892067

RESUMEN

From generating never-before-seen images to domain adaptation, applications of Generative Adversarial Networks (GANs) spread wide in the domain of vision and graphics problems. With the remarkable ability of GANs in learning the distribution and generating images of a particular class, they have been used for semi-supervised disease detection in medical images such as COVID-19 and Pneumonia in X-rays. However, the challenge is that if two classes of images share similar characteristics, the GAN might learn to generalize and hinder the classification of the two classes. In this paper, first we use MNIST and Fashion-MNIST datasets that are easy to visually inspect, to illustrate how similar images cause the GAN to generalize, leading to the poor classification of images. We then show how this generalization can misclassify pneumonia X-rays as healthy cases when using GANs for semi-supervised detection of pneumonia. We propose a modification to the traditional training of GANs that, using small sets of labeled data, allows for improved classification in similar classes of images in a semi-supervised learning framework.


Asunto(s)
COVID-19 , Estado de Salud , Humanos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA