Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
RSC Adv ; 14(1): 211-221, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38173605

RESUMEN

A hydrogel membrane was prepared using activated carbon and sodium dodecyl sulphate modified montmorillonite clay incorporated into sodium alginate polymer. The activated carbon was prepared from a locally available susbine plant. The physiochemical characteristics of the synthesized hydrogel membrane were investigated using FTIR, SEM, EDX, and TGA techniques. The performance of the membrane was evaluated as an adsorbent by methyl red adsorption from water. The adsorption behavior of the hydrogel membrane was investigated under varying conditions of pH (2-10), membrane dose (0.0025-0.015 mg g-1), equilibrium adsorption time (30-360 minutes), solution temperature (25-45 °C) and dye concentration (100-500 mg L-1). The maximum adsorption capacity of the hydrogel membrane was 248.13 mg g-1. The kinetics of methyl red adsorption on hydrogel membrane best followed the pseudo-second order (PSO). The equilibrium adsorption results suggested that it obeyed the Freundlich isotherm very closely (R2 = 0.994). The thermodynamics of methyl red adsorption on the hydrogel membrane revealed that the adsorption was spontaneous (ΔS° = 16.15 kJ K-1 mol-1), favorable (ΔG° = -3.51 kJ mol-1), and endothermic (ΔH° = -1.48 kJ mol-1) in nature. These investigations suggested that the fabricated hydrogel membrane could be suitably used for methyl red adsorption from the solution.

2.
ACS Omega ; 8(42): 38849-38859, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37901518

RESUMEN

In the present study, a biosorbent was prepared through the radiation-induced graft polymerization (RIGP) technique by using a glycidyl methacrylate (GMA) monomer. Functionalized bamboo materials were used for grafting. The grafting percentage (G %) of GMA on bamboo fibers was assessed based on the optimization of the absorbed dose and concentration of the monomer. The chemical modification of the polymerized product into the sulfonated form of the grafted biopolymer was carried out by using sodium sulfite solution. The modification of the biopolymer at various stages was analyzed by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) techniques. By performing scanning electron microscopy (SEM), the morphological changes of the prepared biopolymer were analyzed. The temperature stability of the synthesized material was assessed by the thermogravimetric analysis (TGA) technique. The prepared sulfonated biosorbent was used in the batch adsorption study for the uptake of copper. We examined a variety of variables, including pH, adsorbent dosage, and time. The adsorption kinetics were studied using pseudo-first-order (PFO) and pseudo-second-order (PSO) models. Adsorption isotherms and thermodynamic parameters were also applied to study the adsorption capacity of the biosorbent. The maximum copper adsorption capacity was found to be 198 mg g-1 from the Langmuir isotherm. Copper adsorption followed PSO kinetics (R2 = 0.999). This inexpensive and eco-friendly biosorbent removed 96% of copper ions from the solution.

3.
Chemosphere ; 321: 138008, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36731664

RESUMEN

Alizarin red S (ARS) extraction from aqueous medium was carried out using hydrophobic ionic liquids (ILs) containing trioctylammonium cation paired with 4-tert-butylbenzoate ([TOA][Butbenz] (IL1), 4-phenylbutanoate ([TOA][PheBut] (IL2), 3-4-dimethylbenzoate ([TOA][DMbenz] (IL3), naphthoate, ([TOA][Naph]) (IL4), salicylate ([TOA][Sali]) (IL5) and nonanedioate ([TOA]2[Nona]) (IL6). The findings demonstrated that all of the tested ILs were efficient for extracting ARS, however, [TOA]2[Nona] was more effective than others. For the extraction of ARS from the aqueous phase, the effects of various parameters including the initial pH of the dye solution, contact time, ILs to dye volume ratio (VIL:VW), dye concentration, temperature, and salt effect were investigated. The spontaneity of the liquid-liquid extraction of ARS from the aqueous phase to the IL phase was confirmed by thermodynamic parameters. More than 90% of the ARS was extracted from the aqueous phase to the IL phase throughout all experiments. Interaction of selected IL with dyes were confirmed using FTIR analysis. The standard bacterial strains of Escherichia coli (E. coli) ATCC BAA-2471 (gram negative) and Methicillin-resistant Staphylococcus (MRSA) ATCC 43300 (gram positive) were used for evaluating antibacterial activity. The lower dose (250 ppm), the ILs1, 2, 3, 4, 5, and 6 inhibited 0.40, 1.50, 6.50, 1.50, 2.50, and 0.50 mm growth of E. coli, and 4.0, 2.0, 16.50, 0.40, 5.0, and 3.50 mm growth of MRSA, respectively. The experimental findings confirmed that the present ILs can be utilized as an effective solvent for ARS and other dyes extraction from aqueous media.


Asunto(s)
Compuestos de Amonio , Líquidos Iónicos , Staphylococcus aureus Resistente a Meticilina , Líquidos Iónicos/química , Escherichia coli , Agua/química , Antibacterianos , Colorantes , Textiles
4.
Chemosphere ; 322: 138080, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36781001

RESUMEN

Research on ionic liquids (ILs) and biochars (BCs) is a novel site of scientific interest. An experiment was designed to assess the effect of 1-propanenitrile imidazolium trifluoro methane sulfonate ([C2NIM][CF3SO3]) ionic liquid (IL) and IL-BC combination on the wheat plant. Three working standards of the IL; 50, 250, 500 and 1000 mg/L, prepared in deionized water, were tested in the absence and presence of BC on wheat seedling. Results indicated significant decrease in seed germination (%), length, fresh weight, chlorophyll a, b and carotenoid contents of wheat seedlings at 250, 500 and 1000 mg/L of the IL. An admirable increase in phenolic and 2,2-diphenyl-1-picrylhydrazyl (DPPH) contents of wheat seedlings was noted at 250, 500 and 1000 mg/L of the IL. The application of BC significantly ameliorated the negative effects of IL on the selected parameters of wheat. It is inferred that the undesirable effects of the IL on wheat growth can be positively restored by addition of BC.


Asunto(s)
Líquidos Iónicos , Líquidos Iónicos/química , Clorofila A , Triticum , Plantones
5.
Chemosphere ; 322: 138151, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36804633

RESUMEN

Dyes contaminated water has caused various environmental and health impacts in developing countries especially Pakistan due to different industrial activities. This issue has been addressed in present study by fabricating biocompatible ionic liquid (IL) membranes for the remediation of Crystal violet (CV) dye from contaminated water. Novel ammonium-based IL such as Triethyl dimethyl ammonium sulfate ([C3A][C2H6]SO4); (A2) was synthesized and further functionalized with hydroxyapatite (HAp; extracted from refused fish scales) resulting in the formation of HA2. Furthermore, A2 and HA2 were then used to fabricate the cellulose acetate (CA) based membranes with different volume ratios. The physicochemical properties of membranes-based composite materials were investigated using FTIR, XRD, and TGA and used for the adsorption of CV in the closed batch study. In results, CA-HA2 (1:2) showed higher efficiency of 98% for CV reduction, after the contact time of 90 min. Kinetic studies showed that the adsorption of CV followed the pseudo-second-order kinetic model for all adsorbents. The antibacterial properties of the synthesized membrane were investigated against gram-positive strain, S. aureus and CA-A2 (1:1) showed better antibacterial properties against S. aureus. The developed membrane is sustainable to be used for the adsorption of CV and against bacteria.


Asunto(s)
Compuestos de Amonio , Líquidos Iónicos , Contaminantes Químicos del Agua , Líquidos Iónicos/química , Cinética , Staphylococcus aureus , Colorantes/química , Violeta de Genciana , Agua , Antibacterianos/farmacología , Contaminación del Agua , Adsorción , Contaminantes Químicos del Agua/química
6.
Environ Sci Pollut Res Int ; 30(34): 81433-81449, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36350450

RESUMEN

In the current research work, local clay-alginate beads loaded with sodium dodecyl sulfate (SDS) surfactant were prepared for efficient adsorption of methylene blue (MB). FTIR, SEM-EDX, and TGA instruments were used to examine the surface functional groups, morphology, elemental analysis, and thermal stability of beads, respectively. The adsorption efficiency of native clay for MB increases from 124.78 to 247.94 mg/g when loaded in alginate and SDS in beads form. The impacts of adsorbent dosage, initial pH, contact time, initial MB concentration, and temperature were investigated and optimized. The maximum adsorption capacity of beads for MB was 1468.5 mg/g. The process followed a pseudosecond order kinetic and Freundlich adsorption isotherm model. Thermodynamic study confirmed that MB adsorption on beads is endothermic and spontaneous in nature. The beads were recycled and reused for five times. According to the findings, local clay-alginate beads impregnated with SDS proved to be a promising and efficient adsorbent for extracting MB from aqueous solution.


Asunto(s)
Azul de Metileno , Contaminantes Químicos del Agua , Arcilla , Alginatos , Adsorción , Termodinámica , Cinética , Concentración de Iones de Hidrógeno
7.
Cont Lens Anterior Eye ; 46(2): 101758, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36243521

RESUMEN

PURPOSE: This aim of this study was to assess anti-parasitic properties of deep eutectic solvents against eye pathogen, Acanthamoeba, often associated with the use of contact lens. METHODS: Assays were performed to investigate the effects of various Methyltrioctylammonium chloride-based deep eutectic solvents on Acanthamoeba castellanii, comprising amoebicidal assays, encystment assays, excystment assays, cytotoxicity assays by measuring lactate dehydrogenase release from human cells, and cytopathogenicity assays to determine parasite-mediated host cell death. RESULTS: In a 2 h incubation period, DES-B, DES-C, DES-D, and DES-E exhibited up to 85 % amoebicidal activity at micromolar doses, which was enhanced further following 24 h incubation. When tested in encystment assays, selected deep eutectic solvents abolished cyst formation and were able to block excystment of A. castellanii. All solvents exhibited minimal human cell cytotoxicity except DES-D. Finally, all tested deep eutectic solvents inhibited amoeba-mediated cytopathogenicity, except DES-B. CONCLUSIONS: Deep eutectic solvents show potent antiamoebic effects. These findings are promising and could lead to the development of novel contact lens disinfectants, as well as opening several avenues to explore the molecular mechanisms, various doses and incubation periods, and use of different bases against Acanthamoeba castellanii.


Asunto(s)
Acanthamoeba castellanii , Amebicidas , Humanos , Disolventes Eutécticos Profundos , Amebicidas/farmacología , Compuestos de Amonio Cuaternario/farmacología , Soluciones para Lentes de Contacto/farmacología
8.
Chemosphere ; 309(Pt 1): 136623, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36183883

RESUMEN

In this research work, a novel composite membrane was synthesized from activated carbon (AC) derived from sesban, sodium benzyl dodycyel sulphate (SBDS) treated montmorillonite (MMT) clay and alginate (alg) for the adsorption of methylene-blue (MB) dye. The AC-MMT-alg composite membranes were characterized using analytical characterizations such as FTIR, SEM, EDX and TGA analysis. Several important factors like initial solution pH, contact time, membrane dose, MB concentrations and temperature effect on the adsorption efficiency of membrane were investigated. MB dye adsorption on the synthesized membrane was explained well by pseudo second order equation. Isotherm study showed that MB adsorption data followed Langmuir adsorption isotherm model. The adsorption capacity of membrane for MB was 1429 mg/g from aqueous solution. Thermodynamic study confirmed endothermic and spontaneous MB adsorption on the adsorbent. The mechanistic path way indicated that electrostatic forces were involved in this adsorption process. The synthesized membrane proved an efficient adsorbent for MB adsorption from aqueous media.


Asunto(s)
Azul de Metileno , Contaminantes Químicos del Agua , Adsorción , Alginatos/química , Bentonita/química , Carbón Orgánico/química , Arcilla , Concentración de Iones de Hidrógeno , Cinética , Azul de Metileno/química , Sodio , Sulfatos , Tensoactivos , Agua
9.
Mol Biochem Parasitol ; 250: 111493, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35753525

RESUMEN

Acanthamoeba castellanii is a protist pathogen that can cause sight-threatening keratitis and a fatal infection of the central nervous system, known as granulomatous amoebic encephalitis. In this study, effects of five malonic acid and salicylic acid-based deep eutectic solvents (DES) on A. castellanii were investigated. These are salicylic acid-trioctylphosphine (DES 1), salicylic acid- trihexylamine (DES 2), salicylic acid-trioctylamine (DES 3), malonic acid-trioctylphosphine (DES 4) and malonic acid-trihexylamine (DES 5). The experiments were done by performing amoebicidal, encystment, excystment, cytopathogenicity, and cytotoxicity assays. At micromolar dosage, the solvents DES 2 and DES 3 displayed significant amoebicidal effects (P < 0.05), inhibited encystment and excystment, undermined the cell-mediated cytopathogenicity of A. castellanii, and also displayed minimal cytotoxicity to human cells. Conversely, the chemical components of these solvents: salicylic acid, trihexylamine, and trioctylamine showed minimal effects when tested individually. These results are very promising and to the best of our knowledge, are reported for the first time on the effects of deep eutectic solvents on amoebae. These results can be applied in the development of new formulations of novel contact lens disinfectants against Acanthamoeba castellanii.


Asunto(s)
Queratitis por Acanthamoeba , Acanthamoeba castellanii , Amebicidas , Lentes de Contacto , Queratitis por Acanthamoeba/tratamiento farmacológico , Queratitis por Acanthamoeba/prevención & control , Amebicidas/química , Amebicidas/farmacología , Amebicidas/uso terapéutico , Soluciones para Lentes de Contacto/farmacología , Soluciones para Lentes de Contacto/uso terapéutico , Disolventes Eutécticos Profundos , Humanos , Ácido Salicílico/farmacología , Ácido Salicílico/uso terapéutico
10.
Chemosphere ; 302: 134793, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35525452

RESUMEN

In the current study, activated carbon (AC) was prepared from date palm using single step activation using boric acid as an activating agent. The synthesized AC was incorporated with alginate (AC-alginate (AC-alg)) to prepare membrane for adsorption of methylene blue (MB) in batch adsorption study. The prepared membrane was characterized using different types of analytical techniques such as FTIR, SEM, and TGA analysis. Adsorption of methylene blue dye from aqueous solution was carried out using AC-alg membrane in batch investigation. Various experimental parameters effecting the adsorption of MB on membrane such as initial pH of dye solution, contact time, concentration of dye solution and temperature were optimized to get maximum adsorption efficiency. Kinetics, isotherm and thermodynamics study was performed for dye adsorption. Pseudo-second order kinetic model and Langmuir adsorption isotherm were well fitted to the experimental data. The maximum adsorption capacity for MB adsorption was 666 mg/g found by Langmuir adsorption isotherm. Thermodynamic study revealed that the adsorption of MB on AC-alg membrane is spontaneous and an exothermic process. The experimental result confirmed that AC-alg membrane is a suitable and easily recoverable adsorbent to be used for efficient removal of MB and MB like other dyes.


Asunto(s)
Phoeniceae , Contaminantes Químicos del Agua , Adsorción , Alginatos/química , Carbón Orgánico/química , Colorantes/química , Concentración de Iones de Hidrógeno , Cinética , Azul de Metileno/química , Termodinámica , Contaminantes Químicos del Agua/análisis
11.
Polymers (Basel) ; 14(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35267806

RESUMEN

Cleaning wastewater containing low concentrations of phenolic compounds is a challenging task. In this work, agar-alginate beads impregnated with trihexyltetradecylphosphonium bromide ([P66614][Br]) ionic liquid adsorbent were synthesized as a potential adsorbent for such applications. FTIR, TGA, SEM, EDX and PZC studies were performed to characterize and understand the physicochemical properties of the adsorbent. The Fourier transformation infrared spectroscopy (FTIR) study showed that [P66614][Br] ionic liquid was effectively incorporated into the agar-alginate structure. TGA and SEM confirmed comparative enhanced thermal stability and porous surface, respectively. Chemical reaction rate-altering parameters, i.e., pH, contact time, initial phenol concentration and temperature, are optimized at highest phenol removal. It was found that the maximum phenol adsorption capacity and highest removal efficiency by the adsorbent occurred at pH 2, initial phenol concentration of 150 mg/L, beads dosage of 6 mg/mL and contact time of 2 h with values of 16.28 mg/g and 65.12%, respectively. The pseudo-second order model fitted the adsorption kinetics well, and the Freundlich isotherm model gave the experimental data the best fit. Analysis of thermodynamic data demonstrated that the adsorption process is fundamentally exothermic in nature, and low temperature favors spontaneity of the chemical reaction. Regeneration studies indicated that the adsorbent can at least be used for four cycles in such applications without any considerable loss in adsorption efficiency.

12.
Int J Biol Macromol ; 176: 233-243, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33549668

RESUMEN

A cost-effective and sustainable Calligonum polygonoides biomass based activated carbon (AC) was synthesized. The prepared AC was utilized in the fabrication of carbon-alginate beads for the adsorption of methylene blue (MB) textile dye from aqueous solution. The surface morphology, surface functional groups, elemental analysis and thermal behavior of the prepared beads were investigated using different analytical techniques. Batch adsorption experiments were performed to investigate the adsorption capacity of the beads. Effect of different parameters such as initial pH of MB solution, dose of adsorbent, contact time, initial concentration of MB and temperature were evaluated. The kinetic studies identified pseudo-second order model. Langmuir and Freundlich isotherm models were applied and fitted to the experimental equilibrium data. The beads showed a maximum adsorption capacity of 769 mg/g in basic pH at 30 °C while using 400 mg·L-1 of MB solution. The adsorption process was found to be endothermic and spontaneous as confirmed by the thermodynamic data. The fabricated beads were subjected to recycling which exhibited same adsorption efficiency after six regeneration cycles. The results showed that the AC-alginate beads impregnated with SDS have high adsorption capability and would be used for the efficient removal of cationic dyes from wastewater.


Asunto(s)
Alginatos/química , Carbón Orgánico/química , Azul de Metileno/química , Tensoactivos/química , Contaminantes Químicos del Agua/química , Purificación del Agua , Concentración de Iones de Hidrógeno , Cinética
13.
RSC Adv ; 11(20): 12398-12422, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35423754

RESUMEN

Water pollution is a severe and challenging issue threatening the sustainable development of human civilization. Besides other pollutants, waste fluid streams contain phenolic compounds. These have an adverse effect on the human health and marine ecosystem due to their toxic, mutagenic, and carcinogenic nature. Therefore, it is necessary to remove such phenolic pollutants from waste stream fluids prior to discharging to the environment. Different methods have been proposed to remove phenolic compounds from wastewater, including extraction using ionic liquids (ILs) and deep eutectic solvent (DES), a class of organic salts having melting point below 100 °C and tunable physicochemical properties. The purpose of this review is to present the progress in utilizing ILs and DES for phenolic compound extraction from waste fluid streams. The effects of IL structural characteristics, such as anion type, cation type, alkyl chain length, and functional groups will be discussed. In addition, the impact of key process parameters such as pH, phenol concentration, phase ratio, and temperature will be also described. More importantly, several ideas for addressing the limitations of the treatment process and improving its efficiency and industrial viability will be presented. These ideas may form the basis for future studies on developing more effective IL-based processes for treating wastewaters contaminated with phenolic pollutants, to address a growing worldwide environmental problem.

14.
J Biomater Sci Polym Ed ; 30(9): 785-796, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31018777

RESUMEN

Cellulose-based nanocomposites have gained much attention due to their remarkable biological properties such as biodegradability, biocompatibility, and low toxicity. In this research work, 1-h-3-methylimidazolium hydrogen sulfate ionic liquid was employed as an efficient solvent for preparation of cellulosic Ag-nanocomposites (CRC/AgNPs composite) from Neem plant. Ionic liquid plays a dual role in obtaining cellulose-rich compound (CRC; removing lignin and hemicellulose components) and plant's extract (phenolic compounds such as flavonoids, tannins, etc.) that reduces the AgNO3 into AgNPs for preparation of CRC/AgNPs composite. The prepared CRC/AgNPs composite was characterized using XRD, FTIR and SEM techniques. The XRD and FTIR spectral analysis showed the characteristic peaks assigned to cellulosic constituent and AgNPs. SEM analysis revealed the particles in the range from 26 to 56 nm. The CRC/AgNPs composite was evaluated for its antibacterial and mechanical properties. The antibacterial activity against S. aureus and E. coli for CRC/AgNPs composite was observed in comparison to CRC. Cell viability and morphology were performed on MC3T3-E1 cells which showed no as such toxicity for the prepared CRC/AgNPs composite. Moreover, the addition of CRC/AgNPs composite as a filler increased the compression strength of polymeric materials.


Asunto(s)
Celulosa/química , Celulosa/farmacología , Líquidos Iónicos/química , Nanopartículas del Metal/química , Nanocompuestos/química , Nanotecnología , Plata/química , Células 3T3 , Animales , Antibacterianos/química , Antibacterianos/farmacología , Supervivencia Celular/efectos de los fármacos , Fuerza Compresiva , Imidazoles/química , Ratones , Pruebas de Sensibilidad Microbiana
15.
Environ Technol ; 39(12): 1522-1532, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28524800

RESUMEN

Coating fertilizer particles with thin films is a possibility to control fertilizer release rates. It is observed that novel urea cross-linked starch-lignin composite thin films, prepared by solution casting, swell on coming into contact with water due to the increase in volume by water uptake by diffusion. The effect of lignin content, varied from 0% to 20% in steps of 5% at three different temperatures (25°C, 35°C and 45°C), on swelling of the film was investigated. By gravimetric analysis, the equilibrium water uptake and diffusion coefficient decrease with lignin content, indicating that the addition of lignin increases the hydrophobicity of the films. When temperature increases, the diffusion coefficient and the amount of water absorbed tend to increase. Assuming that swelling of the thin film is by water uptake by diffusion, the diffusion coefficient is estimated. The estimated diffusion coefficient decreases from 4.3 to 2.1 × 10-7 cm2/s at 25°C, from 5.3 to 2.9 × 10-7 cm2/s at 35°C and from 6.2 to 3.8 × 10-7 cm2/s at 45°C depending on the lignin content. Activation energy for the increase in diffusion coefficient with temperature is observed to be 16.55 kJ/mol. An empirical model of water uptake as a function of percentage of lignin and temperature was also developed based on Fick's law.


Asunto(s)
Lignina/química , Urea/química , Difusión , Permeabilidad , Almidón , Agua , Purificación del Agua
16.
Carbohydr Polym ; 181: 208-214, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29253965

RESUMEN

In the present research work, dicationic ionic liquids, containing 1,4-bis(3-methylimidazolium-1-yl) butane ([C4(Mim)2]) cation with counter anions [(2HSO4)(H2SO4)0], [(2HSO4)(H2SO4)2] and [(2HSO4)(H2SO4)4] were synthesised. ILs structures were confirmed using 1H NMR spectroscopy. Thermal stability, Hammett acidity, density and viscosity of ILs were determined. Various types of lignocellulosic biomass such as rubber wood, palm oil frond, bamboo and rice husk were converted into levulinic acid (LA). Among the synthesized ionic liquids, [C4(Mim)2][(2HSO4)(H2SO4)4] showed higher % yield of LA up to 47.52 from bamboo biomass at 110°C for 60min, which is the better yield at low temperature and short time compared to previous reports. Surface morphology, surface functional groups and thermal stability of bamboo before and after conversion into LA were studied using SEM, FTIR and TGA analysis, respectively. This one-pot production of LA from agro-waste will open new opportunity for the conversion of sustainable biomass resources into valuable chemicals.


Asunto(s)
Ácidos/farmacología , Biomasa , Líquidos Iónicos/farmacología , Ácidos Levulínicos/metabolismo , Lignina/metabolismo , Bambusa/química , Catálisis , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Factores de Tiempo , Viscosidad
17.
Chemosphere ; 195: 21-28, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29248749

RESUMEN

Over the past decades, Ionic liquids (ILs) have gained considerable attention from the scientific community in reason of their versatility and performance in many fields. However, they nowadays remain mainly for laboratory scale use. The main barrier hampering their use in a larger scale is their questionable ecological toxicity. This study investigated the effect of hydrophobic and hydrophilic cyclic cation-based ILs against four pathogenic bacteria that infect humans. For that, cations, either of aromatic character (imidazolium or pyridinium) or of non-aromatic nature, (pyrrolidinium or piperidinium), were selected with different alkyl chain lengths and combined with both hydrophilic and hydrophobic anionic moieties. The results clearly demonstrated that introducing of hydrophobic anion namely bis((trifluoromethyl)sulfonyl)amide, [NTF2] and the elongation of the cations substitutions dramatically affect ILs toxicity behaviour. The established toxicity data [50% effective concentration (EC50)] along with similar endpoint collected from previous work against Aeromonas hydrophila were combined to developed quantitative structure-activity relationship (QSAR) model for toxicity prediction. The model was developed and validated in the light of Organization for Economic Co-operation and Development (OECD) guidelines strategy, producing good correlation coefficient R2 of 0.904 and small mean square error (MSE) of 0.095. The reliability of the QSAR model was further determined using k-fold cross validation.


Asunto(s)
Antiinfecciosos/química , Bacterias/efectos de los fármacos , Líquidos Iónicos/farmacología , Relación Estructura-Actividad Cuantitativa , Aniones , Cationes/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Líquidos Iónicos/química , Reproducibilidad de los Resultados
18.
Ultrason Sonochem ; 37: 310-319, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28427638

RESUMEN

5-Hydroxymethylfurfural (HMF) has been identified as a promising biomass-derived platform chemical. In this study, one pot production of HMF was studied in ionic liquid (IL) under probe sonication technique. Compared with the conventional heating technique, the use of probe ultrasonic irradiation reduced the reaction time from hours to minutes. Glucose, cellulose and local bamboo, treated with ultrasonic, produced HMF in the yields of 43%, 31% and 13% respectively, within less than 10min. The influence of various parameters such as acoustic power, reaction time, catalysts and glucose loading were studied. About 40% HMF yield at glucose conversion above 90% could be obtained with 2% of catalyst in 3min. Negligible amount of soluble by-product was detected, and humin formation could be controlled by adjusting the different process parameters. Upon extraction of HMF, the mixture of ionic liquid and catalyst could be reused and exhibited no significant reduction of HMF yield over five successive runs. The purity of regenerated [C4C1im]Cl and HMF was confirmed by NMR spectroscopy, indicating neither changes in the chemical structure nor presence of any major contaminants during the conversion under ultrasonic treatment. 13C NMR suggests that [C4C1im]Cl/CrCl3 catalyses mutarotation of α-glucopyranose to ß-glucopyranose leading to isomerization and finally conversion to HMF. The experimental results demonstrate that the use of probe sonication technique for conversion to HMF provides a positive process benefit.


Asunto(s)
Biomasa , Celulosa/química , Furaldehído/análogos & derivados , Glucosa/química , Líquidos Iónicos/química , Sonicación , Catálisis , Furaldehído/química
19.
ScientificWorldJournal ; 2015: 562693, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25705714

RESUMEN

The ash of C. polygonoides (locally called balanza) was collected from Lakki Marwat, Khyber Pakhtunkhwa, Pakistan, and was utilized as biosorbent for methylene blue (MB) removal from aqueous solution. The ash was used as biosorbent without any physical or chemical treatment. The biosorbent was characterized by using various techniques such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The particle size and surface area were measured using particle size analyzer and Brunauer-Emmett-Teller equation (BET), respectively. The SEM and BET results expressed that the adsorbent has porous nature. Effects of various conditions such as initial concentration of methylene blue (MB), initial pH, contact time, dosage of biosorbent, and stirring rate were also investigated for the adsorption process. The rate of the adsorption of MB on biomass sample was fast, and equilibrium has been achieved within 1 hour. The kinetics of MB adsorption on biosorbent was studied by pseudo-first- and pseudo-second-order kinetic models and the pseudo-second-order has better mathematical fit with correlation coefficient value (R (2)) of 0.999. The study revealed that C. polygonoides ash proved to be an effective, alternative, inexpensive, and environmentally benign biosorbent for MB removal from aqueous solution.


Asunto(s)
Azul de Metileno/aislamiento & purificación , Polygonaceae/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Absorción Fisicoquímica , Cinética , Azul de Metileno/química , Azul de Metileno/metabolismo , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo
20.
Bioinorg Chem Appl ; 2014: 916361, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25276113

RESUMEN

Five heteroleptic palladium(II) complexes of the general formula Pd(PR3)(tu)Cl2, where PR3 = triphenylphosphine (1), diphenyl-o-tolylphosphine (2), diphenyl-p-tolylphosphine (3), diphenyl-t-butylphosphine (4), and diphenyl-o-methoxyphenylphosphine (5), and tu = 1,3-bis(2-methoxyphenyl) thiourea. They all have been synthesized and characterized by various spectroscopic techniques (elemental analysis, FTIR, and (1)H NMR and the ligand 1,3-bis(2-methoxyphenyl) thiourea was synthesized by single crystal X-ray diffraction technique). The synthesized compounds were screened for their antibacterial activity against four strains of bacteria (Escherichia coli, Shigella flexneri, Staphylococcus aureus, and Bacillus subtilis). The antitumor potential was evaluated in terms of activity against brine shrimp eggs and DNA interaction. The mixed ligand complexes have exhibited moderate antibacterial activity and promising antitumor potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA