Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124144, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38508073

RESUMEN

Emergence of deep eutectic solvents as potential replacements for volatile organic solvents has attracted interest of the scientific community in diverse fields of applications. Compared to ionic liquids, which exhibit similarity in many respects with this new class of green solvents, deep eutectic solvents (DESs) show low toxicity, and are easy to prepare from cheap and abundantly available starting materials. Knowledge of physicochemical properties of DESs is a prerequisite for their safe applications in technological fields and to understand the nature of interactions present in these systems. Although physicochemical properties of choline chloride based DESs are widely investigated, similar information on ammonium acetate based DESs is scant. In this work, a novel ammonium acetate/propionic acid deep eutectic solvent (AA/PA DES) is reported which is prepared by mixing ammonium acetate (AA) and propionic acid (PA) in the 1:3 mol ratio and characterized by FTIR, 1H and 13C NMR, TGA and DSC techniques. The density (ρ), sound velocity (u), viscosity (η) and conductivity (κ) of the pure DES and its binary mixtures with water are investigated over the entire composition range and temperatures (298.15-353.15) K. The excess properties, VmE, KSE, Δη, and ΔG*E are calculated and corelated using Redlich-Kister equation (RKE). Temperature dependence of conductivity and viscosity is satisfactorily described by the Vogel - Fulcher - Tamman (VFT) equation rather than Arrhenius equation. The pure DES shows a wide electrochemical potential window ranging from - 1000 mV to + 1000 mV, which coupled with its better solubilizing characteristics, could be exploited for electrochemical work.

2.
ACS Omega ; 9(3): 3730-3745, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38284059

RESUMEN

Deep eutectic solvents (DESs) are considered to play an important role in green chemistry and other technological fields as an alternative to organic solvents. The present study reports measurements of density (ρ), speed of sound (u), dynamic viscosity (η), and electrical conductivity (κ) and investigates physicochemical properties of choline chloride/acetic acid (ChCl/AcA DES) and its binary mixtures with dimethyl sulfoxide (DMSO) over the entire composition and temperature (298.15-353.15 K) range. The density data are well fitted by a second-degree polynomial equation in T. DES/DMSO mixtures exhibit negative excess molar volume and isentropic compressibility deviation with a minimum in respective curves at x1 ≈ 0.15 (x1 is the mole fraction of DES in the mixture), which became deeper with increasing temperature. The ChCl/AcA DES and DMSO curves for excess partial molar volume cross each other at x1 ≈ 0.15, showing that the packing effect is dominant over specific interactions. A similar behavior is observed for excess molar viscosity, showing the minima at x1 ≈ 0.62, and substantiates volumetric results. The temperature dependence of viscosity and conductivity is well described by the Vogel-Fulcher-Tammann (VFT) equation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA