Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Blood Adv ; 7(24): 7445-7456, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38091008

RESUMEN

Somatic UBA1 mutations in hematopoietic cells are a hallmark of Vacuoles, E1 enzyme, X-linked, Autoinflammatory, Somatic (VEXAS) syndrome, which is a late-onset inflammatory disease associated with bone marrow failure and high mortality. The majority of UBA1 mutations in VEXAS syndrome comprise hemizygous mutations affecting methionine-41 (M41), leading to the expression of UBA1M41T, UBA1M41V, or UBA1M41L and globally reduced protein polyubiquitination. Here, we used CRISPR-Cas9 to engineer isogenic 32D mouse myeloid cell lines expressing hemizygous Uba1WT or Uba1M41L from the endogenous locus. Consistent with prior analyses of patients with VEXAS syndrome samples, hemizygous Uba1M41L expression was associated with loss of the UBA1b protein isoform, gain of the UBA1c protein isoform, reduced polyubiquitination, abnormal cytoplasmic vacuoles, and increased production of interleukin-1ß and inflammatory chemokines. Vacuoles in Uba1M41L cells contained a variety of endolysosomal membranes, including small vesicles, multivesicular bodies, and multilamellar lysosomes. Uba1M41L cells were more sensitive to the UBA1 inhibitor TAK243. TAK243 treatment promoted apoptosis in Uba1M41L cells and led to preferential loss of Uba1M41L cells in competition assays with Uba1WT cells. Knock-in of a TAK243-binding mutation, Uba1A580S, conferred TAK243 resistance. In addition, overexpression of catalytically active UBA1b in Uba1M41L cells restored polyubiquitination and increased TAK243 resistance. Altogether, these data indicate that loss of UBA1b underlies a key biochemical phenotype associated with VEXAS syndrome and renders cells with reduced UBA1 activity vulnerable to targeted UBA1 inhibition. Our Uba1M41L knock-in cell line is a useful model of VEXAS syndrome that will aid in the study of disease pathogenesis and the development of effective therapies.


Asunto(s)
Células Mieloides , Células Progenitoras Mieloides , Animales , Ratones , Humanos , Lisosomas , Isoformas de Proteínas
2.
Nat Cell Biol ; 24(6): 872-884, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668135

RESUMEN

Mitochondrial metabolites regulate leukaemic and normal stem cells by affecting epigenetic marks. How mitochondrial enzymes localize to the nucleus to control stem cell function is less understood. We discovered that the mitochondrial metabolic enzyme hexokinase 2 (HK2) localizes to the nucleus in leukaemic and normal haematopoietic stem cells. Overexpression of nuclear HK2 increases leukaemic stem cell properties and decreases differentiation, whereas selective nuclear HK2 knockdown promotes differentiation and decreases stem cell function. Nuclear HK2 localization is phosphorylation-dependent, requires active import and export, and regulates differentiation independently of its enzymatic activity. HK2 interacts with nuclear proteins regulating chromatin openness, increasing chromatin accessibilities at leukaemic stem cell-positive signature and DNA-repair sites. Nuclear HK2 overexpression decreases double-strand breaks and confers chemoresistance, which may contribute to the mechanism by which leukaemic stem cells resist DNA-damaging agents. Thus, we describe a non-canonical mechanism by which mitochondrial enzymes influence stem cell function independently of their metabolic function.


Asunto(s)
Hexoquinasa , Leucemia Mieloide Aguda , Cromatina/metabolismo , ADN/metabolismo , Células Madre Hematopoyéticas/metabolismo , Hexoquinasa/genética , Hexoquinasa/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo
3.
Leukemia ; 36(5): 1283-1295, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35152270

RESUMEN

AML cells are arranged in a hierarchy with stem/progenitor cells giving rise to more differentiated bulk cells. Despite the importance of stem/progenitors in the pathogenesis of AML, the determinants of the AML stem/progenitor state are not fully understood. Through a comparison of genes that are significant for growth and viability of AML cells by way of a CRISPR screen, with genes that are differentially expressed in leukemia stem cells (LSC), we identified importin 11 (IPO11) as a novel target in AML. Importin 11 (IPO11) is a member of the importin ß family of proteins that mediate transport of proteins across the nuclear membrane. In AML, knockdown of IPO11 decreased growth, reduced engraftment potential of LSC, and induced differentiation. Mechanistically, we identified the transcription factors BZW1 and BZW2 as novel cargo of IPO11. We further show that BZW1/2 mediate a transcriptional signature that promotes stemness and survival of LSC. Thus, we demonstrate for the first time how specific cytoplasmic-nuclear regulation supports stem-like transcriptional signature in relapsed AML.


Asunto(s)
Leucemia Mieloide Aguda , beta Carioferinas , Transporte Activo de Núcleo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Leucemia Mieloide Aguda/patología , Células Madre Neoplásicas/patología , Células Madre/metabolismo , beta Carioferinas/genética , beta Carioferinas/metabolismo
4.
Blood ; 138(3): 234-245, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34292323

RESUMEN

Venetoclax, a Bcl-2 inhibitor, in combination with the hypomethylating agent azacytidine, achieves complete remission with or without count recovery in ∼70% of treatment-naive elderly patients unfit for conventional intensive chemotherapy. However, the mechanism of action of this drug combination is not fully understood. We discovered that venetoclax directly activated T cells to increase their cytotoxicity against acute myeloid leukemia (AML) in vitro and in vivo. Venetoclax enhanced T-cell effector function by increasing reactive oxygen species generation through inhibition of respiratory chain supercomplexes formation. In addition, azacytidine induced a viral mimicry response in AML cells by activating the STING/cGAS pathway, thereby rendering the AML cells more susceptible to T cell-mediated cytotoxicity. Similar findings were seen in patients treated with venetoclax, as this treatment increased reactive oxygen species generation and activated T cells. Collectively, this study presents a new immune-mediated mechanism of action for venetoclax and azacytidine in the treatment of AML and highlights a potential combination of venetoclax and adoptive cell therapy for patients with AML.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Sulfonamidas/farmacología , Linfocitos T/efectos de los fármacos , Adulto , Antineoplásicos/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Células Cultivadas , Humanos , Inmunidad Celular/efectos de los fármacos , Leucemia Mieloide Aguda/inmunología , Especies Reactivas de Oxígeno/inmunología , Sulfonamidas/uso terapéutico , Linfocitos T/inmunología , Células Tumorales Cultivadas
5.
Cancer Discov ; 11(5): 1052-1066, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33504581

RESUMEN

Mitochondria are involved in many biological processes including cellular homeostasis, energy generation, and apoptosis. Moreover, mitochondrial and metabolic pathways are interconnected with gene expression to regulate cellular functions such as cell growth, survival, differentiation, and immune recognition. Metabolites and mitochondrial enzymes regulate chromatin-modifying enzymes, chromatin remodeling, and transcription regulators. Deregulation of mitochondrial pathways and metabolism leads to alterations in gene expression that promote cancer development, progression, and evasion of the immune system. This review highlights how mitochondrial and metabolic pathways function as a central mediator to control gene expression, specifically on stem cell functions, differentiation, and immune response in leukemia. SIGNIFICANCE: Emerging evidence demonstrates that mitochondrial and metabolic pathways influence gene expression to promote tumor development, progression, and immune evasion. These data highlight new areas of cancer biology and potential new therapeutic strategies.


Asunto(s)
Leucemia/metabolismo , Mitocondrias/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Humanos , Inmunidad , Redes y Vías Metabólicas , Mitocondrias/genética , Células Madre
6.
Cell Stem Cell ; 26(6): 926-937.e10, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32416059

RESUMEN

Leukemic stem cells (LSCs) rely on oxidative metabolism and are differentially sensitive to targeting mitochondrial pathways, which spares normal hematopoietic cells. A subset of mitochondrial proteins is folded in the intermembrane space via the mitochondrial intermembrane assembly (MIA) pathway. We found increased mRNA expression of MIA pathway substrates in acute myeloid leukemia (AML) stem cells. Therefore, we evaluated the effects of inhibiting this pathway in AML. Genetic and chemical inhibition of ALR reduces AML growth and viability, disrupts LSC self-renewal, and induces their differentiation. ALR inhibition preferentially decreases its substrate COX17, a mitochondrial copper chaperone, and knockdown of COX17 phenocopies ALR loss. Inhibiting ALR and COX17 increases mitochondrial copper levels which in turn inhibit S-adenosylhomocysteine hydrolase (SAHH) and lower levels of S-adenosylmethionine (SAM), DNA methylation, and chromatin accessibility to lower LSC viability. These results provide insight into mechanisms through which mitochondrial copper controls epigenetic status and viability of LSCs.


Asunto(s)
Autorrenovación de las Células , Leucemia Mieloide Aguda , Diferenciación Celular , Cobre , Humanos , Células Madre Neoplásicas
7.
Blood ; 136(1): 81-92, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32299104

RESUMEN

Through a clustered regularly insterspaced short palindromic repeats (CRISPR) screen to identify mitochondrial genes necessary for the growth of acute myeloid leukemia (AML) cells, we identified the mitochondrial outer membrane protein mitochondrial carrier homolog 2 (MTCH2). In AML, knockdown of MTCH2 decreased growth, reduced engraftment potential of stem cells, and induced differentiation. Inhibiting MTCH2 in AML cells increased nuclear pyruvate and pyruvate dehydrogenase (PDH), which induced histone acetylation and subsequently promoted the differentiation of AML cells. Thus, we have defined a new mechanism by which mitochondria and metabolism regulate AML stem cells and gene expression.


Asunto(s)
Leucemia Mieloide Aguda/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Proteínas de Neoplasias/fisiología , Acetilación , Animales , Sistemas CRISPR-Cas , Diferenciación Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Sangre Fetal/citología , Regulación Leucémica de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Histonas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos C57BL , Proteína de la Leucemia Mieloide-Linfoide/fisiología , Proteínas de Fusión Oncogénica/fisiología , Procesamiento Proteico-Postraduccional , Ácido Pirúvico/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología
8.
Nat Commun ; 9(1): 5132, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30510213

RESUMEN

The role of mitochondria dynamics and its molecular regulators remains largely unknown during naïve-to-primed pluripotent cell interconversion. Here we report that mitochondrial MTCH2 is a regulator of mitochondrial fusion, essential for the naïve-to-primed interconversion of murine embryonic stem cells (ESCs). During this interconversion, wild-type ESCs elongate their mitochondria and slightly alter their glutamine utilization. In contrast, MTCH2-/- ESCs fail to elongate their mitochondria and to alter their metabolism, maintaining high levels of histone acetylation and expression of naïve pluripotency markers. Importantly, enforced mitochondria elongation by the pro-fusion protein Mitofusin (MFN) 2 or by a dominant negative form of the pro-fission protein dynamin-related protein (DRP) 1 is sufficient to drive the exit from naïve pluripotency of both MTCH2-/- and wild-type ESCs. Taken together, our data indicate that mitochondria elongation, governed by MTCH2, plays a critical role and constitutes an early driving force in the naïve-to-primed pluripotency interconversion of murine ESCs.


Asunto(s)
Dinámicas Mitocondriales/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Células Cultivadas , Dinaminas/genética , Dinaminas/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Células Madre Embrionarias de Ratones/citología , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Células Madre Pluripotentes/citología
9.
Mol Biol Cell ; 28(6): 817-824, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28077620

RESUMEN

Stimulation of the MAPK pathway results in mitogen- and stress-activated protein kinase 1/2 (MSK1/2)-catalyzed phosphorylation of histone H3 at serine 10 or 28 and expression of immediate-early (IE) genes. In 10T1/2 mouse fibroblasts, phosphorylation of H3S10 and H3S28 occurs on different H3 molecules and in different nuclear regions. Similarly, we show that mitogen-induced H3S10 and H3S28 phosphorylation occurs in separate pools in human primary fibroblasts. High-resolution imaging studies on both cell types reveal that H3S10 and H3S28 phosphorylation events can be induced in a single cell but on different alleles, giving rise to H3S10ph and H3S28ph epialleles. Coimmunoprecipitation and inhibition studies demonstrate that CBP/p300-mediated H3K27 acetylation is required for MSK1/2 to phosphorylate S28. Although the K9ac and S10ph marks coexist on H3, S10 phosphorylation is not dependent on K9 acetylation by PCAF. We propose that random targeting of H3S10 or H3S28 results from the stochastic acetylation of H3 by CBP/p300 or PCAF, a process comparable to transcriptional bursting causing temporary allelic imbalance. In 10T1/2 cells expressing Jun, at least two of three alleles per cell were induced, a sign of high expression level. The redundant roles of H3S10ph and H3S28ph might enable rapid and efficient IE gene induction.


Asunto(s)
Histonas/genética , Acetilación , Animales , Técnicas de Cultivo de Célula , Fibroblastos , Histonas/metabolismo , Humanos , Ratones , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Fosforilación , Polimorfismo de Nucleótido Simple/genética , Procesamiento Proteico-Postraduccional , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Serina , Activación Transcripcional
10.
J Cell Physiol ; 231(10): 2196-204, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26864447

RESUMEN

Pre-mRNA splicing is a cotranscriptional process affected by the chromatin architecture along the body of coding genes. Recruited to the pre-mRNA by splicing factors, histone deacetylases (HDACs) and K-acetyltransferases (KATs) catalyze dynamic histone acetylation along the gene. In colon carcinoma HCT 116 cells, HDAC inhibition specifically increased KAT2B occupancy as well as H3 and H4 acetylation of the H3K4 trimethylated (H3K4me3) nucleosome positioned over alternative exon 2 of the MCL1 gene, an event paralleled with the exclusion of exon 2. These results were reproduced in MDA-MB-231, but not in MCF7 breast adenocarcinoma cells. These later cells have much higher levels of demethylase KDM5B than either HCT 116 or MDA-MB-231 cells. We show that H3K4me3 steady-state levels and H3K4me3 occupancy at the end of exon 1 and over exon 2 of the MCL1 gene were lower in MCF7 than in MDA-MB-231 cells. Furthermore, in MCF7 cells, there was minimal effect of HDAC inhibition on H3/H4 acetylation and H3K4me3 levels along the MCL1 gene and no change in pre-mRNA splicing choice. These results show that, upon HDAC inhibition, the H3K4me3 mark plays a critical role in the exclusion of exon 2 from the MCL1 pre-mRNA. J. Cell. Physiol. 231: 2196-2204, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Histonas/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Nucleosomas/metabolismo , Procesamiento Proteico-Postraduccional/genética , Precursores del ARN/metabolismo , Empalme del ARN/genética , Acetilación , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Lisina/metabolismo , Metilación
11.
Biochem Cell Biol ; 92(4): 317-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24935679

RESUMEN

Ribonucleoprotein immunoprecipitation (RIP) is an antibody-based method to detect RNA-protein interactions in situ. In the assay, UV cross-linking is commonly used to preserve RNA-protein interactions for subsequent target identification. UV light is a zero-length cross linker and thus identifies proteins directly bound to RNAs. Here, we describe a dual cross-linking RIP method that involves sequential protein-protein cross-linking step with a protein-protein cross-linker, followed by protein-RNA fixation by UV irradiation. In this way, proteins that indirectly bound to RNA can be analyzed.


Asunto(s)
Inmunoprecipitación/métodos , Ribonucleoproteínas/aislamiento & purificación , Células Cultivadas , Reactivos de Enlaces Cruzados/química , Humanos , ARN/aislamiento & purificación , Ribonucleoproteínas/química , Succinimidas/química
12.
Nucleic Acids Res ; 42(3): 1656-70, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24234443

RESUMEN

Histone deacetylases (HDACs) and lysine acetyltransferases (KATs) catalyze dynamic histone acetylation at regulatory and coding regions of transcribed genes. Highly phosphorylated HDAC2 is recruited within corepressor complexes to regulatory regions, while the nonphosphorylated form is associated with the gene body. In this study, we characterized the nonphosphorylated HDAC2 complexes recruited to the transcribed gene body and explored the function of HDAC-complex-mediated dynamic histone acetylation. HDAC1 and 2 were coimmunoprecipitated with several splicing factors, including serine/arginine-rich splicing factor 1 (SRSF1) which has roles in alternative splicing. The co-chromatin immunoprecipitation of HDAC1/2 and SRSF1 to the gene body was RNA-dependent. Inhibition of HDAC activity and knockdown of HDAC1, HDAC2 or SRSF1 showed that these proteins were involved in alternative splicing of MCL1. HDAC1/2 and KAT2B were associated with nascent pre-mRNA in general and with MCL1 pre-mRNA specifically. Inhibition of HDAC activity increased the occupancy of KAT2B and acetylation of H3 and H4 of the H3K4 methylated alternative MCL1 exon 2 nucleosome. Thus, nonphosphorylated HDAC1/2 is recruited to pre-mRNA by splicing factors to act at the RNA level with KAT2B and other KATs to catalyze dynamic histone acetylation of the MCL1 alternative exon and alter the splicing of MCL1 pre-mRNA.


Asunto(s)
Empalme Alternativo , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Histonas/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Acetilación , Línea Celular , Cromatina/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Nucleares/metabolismo , ARN Polimerasa II/metabolismo , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Empalme Serina-Arginina , Transcripción Genética , Factores de Transcripción p300-CBP/metabolismo
13.
FEBS Lett ; 587(10): 1510-7, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23542037

RESUMEN

Dynamic histone acetylation, catalyzed by lysine acetyltransferases and HDACs, is critical to IEG expression. Expression of IEGs, such as FOSL1, is induced by several signal transduction pathways resulting in activation of the protein kinase MSK and phosphorylation of histone H3 at serine 10 of nucleosomes (the nucleosome response) at the upstream promoter and regulatory region of target genes. HDAC inhibitors prevent FOSL1 gene induction and the association of HDAC1, 2 and 3 with the gene body. However, HDAC inhibitors did not prevent the nucleosome response. Thus HDAC inhibitors perturb events downstream of the nucleosome response required for FOSL1 transcription initiation.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Nucleosomas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes Inmediatos-Precoces/efectos de los fármacos , Genes Inmediatos-Precoces/genética , Células HCT116 , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 2/antagonistas & inhibidores , Histona Desacetilasas/metabolismo , Humanos , Ácidos Hidroxámicos/farmacología , Nucleosomas/genética , Nucleosomas/metabolismo , Péptidos Cíclicos/farmacología , Acetato de Tetradecanoilforbol/farmacología , Activación Transcripcional/efectos de los fármacos
14.
J Biol Chem ; 288(23): 16518-16528, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23612983

RESUMEN

Histone deacetylase 1 (HDAC1) and HDAC2 are components of corepressor complexes that are involved in chromatin remodeling and regulation of gene expression by regulating dynamic protein acetylation. HDAC1 and -2 form homo- and heterodimers, and their activity is dependent upon dimer formation. Phosphorylation of HDAC1 and/or HDAC2 in interphase cells is required for the formation of HDAC corepressor complexes. In this study, we show that during mitosis, HDAC2 and, to a lesser extent, HDAC1 phosphorylation levels dramatically increase. When HDAC1 and -2 are displaced from the chromosome during metaphase, they dissociate from each other, but each enzyme remains in association with components of the HDAC corepressor complexes Sin3, NuRD, and CoREST as homodimers. Enzyme inhibition studies and mutational analyses demonstrated that protein kinase CK2-catalyzed phosphorylation of HDAC1 and -2 is crucial for the dissociation of these two enzymes. These results suggest that corepressor complexes, including HDAC1 or HDAC2 homodimers, might target different cellular proteins during mitosis.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Cromosomas Humanos/enzimología , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Mitosis/fisiología , Multimerización de Proteína/fisiología , Quinasa de la Caseína I/antagonistas & inhibidores , Quinasa de la Caseína I/genética , Cromosomas Humanos/genética , Proteínas Co-Represoras , Células HEK293 , Células HeLa , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/genética , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fosforilación/fisiología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3/genética , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo
15.
J Cell Physiol ; 228(7): 1525-35, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23280436

RESUMEN

During mitosis, histone deacetylase 2 (HDAC2) becomes highly phosphorylated through the action of CK2, and HDAC1 and 2 are displaced from mitotic chromosomes. HDAC1 and 2 are components of corepressor complexes, which function with lysine acetyltransferases to catalyze dynamic protein acetylation and regulate gene expression. In this study, we show that HDAC1 and 2 associate with F-actin in mitotic cells. Inhibition of Aurora B or protein kinase CK2 did not prevent the displacement of HDAC1 and 2 from mitotic chromosomes in HeLa cells. Further, proteins of the HDAC1 and 2 corepressor complexes and transcription factors recruiting these corepressors to chromatin were dissociated from mitotic chromosomes independent of Aurora B activity. HDAC1 and 2 returned to the nuclei of daughter cells during lamin A/C reassembly and before Sp1, Sp3, and RNA polymerase II. Our results show that HDAC1 and 2 corepressor complexes are removed from the mitotic chromosomes and are available early in the events leading to the re-establishment of the gene expression program in daughter cells.


Asunto(s)
Actinas/metabolismo , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Mitosis/fisiología , Aurora Quinasa B , Aurora Quinasas , Cromosomas Humanos/metabolismo , Epigénesis Genética , Células HeLa , Histonas/metabolismo , Humanos , Inmunohistoquímica , Células MCF-7 , Mitosis/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo
16.
Expert Opin Ther Targets ; 17(1): 29-41, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23062071

RESUMEN

INTRODUCTION: Class I histone deacetylases (HDACs) are often overexpressed in cancer, and their inhibition typically leads cancer cells, but not normal cells, to apoptosis. Hence, the field of cancer therapy has experienced a continued surge in the development of HDAC inhibitors. AREAS COVERED: Class I comprises of HDAC1, 2, 3 and 8. HDAC1, 2 and 3 are active as subunits of multiprotein complexes while an HDAC8 complex has not been identified. Besides being a major contributor to poor prognosis in childhood neuroblastoma, little is known of HDAC8 functions and substrates. The targeting and activities of HDAC1 - 3 are modulated by post-translational modifications and association with numerous proteins. The composition of the various HDAC complexes is cell type dependent and fluctuates with intra- and intercellular stimuli. These HDAC complexes play roles at multiple levels in gene expression and genome stability. The application of isoform-specific HDAC inhibitors has met with varying success in clinical trials. EXPERT OPINION: To elucidate the mechanism and cellular impact of HDAC inhibitors, we need to identify the spectrum of class I HDAC complexes and their functions. In the cases of HDAC1 - 3, selectivity of HDAC inhibitors should be directed against relevant complexes. HDAC8 active site unique features facilitate the design of selective inhibitors.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Neoplasias/metabolismo , Animales , Antineoplásicos/uso terapéutico , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico
17.
Adv Biol Regul ; 52(3): 377-88, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22884031

RESUMEN

Epigenetics refer to a variety of processes that have long-term effects on gene expression programs without changes in DNA sequence. Key players in epigenetic control are histone modifications and DNA methylation which, in concert with chromatin remodeling complexes, nuclear architecture and microRNAs, define the chromatin structure of a gene and its transcriptional activity. There is a growing awareness that histone modifications and chromatin organization influence pre-mRNA splicing. Further there is emerging evidence that pre-mRNA splicing itself influences chromatin organization. In the mammalian genome around 95% of multi-exon genes generate alternatively spliced transcripts, the products of which create proteins with different functions. It is now established that several human diseases are a direct consequence of aberrant splicing events. In this review we present the interplay between epigenetic mechanisms and splicing regulation, as well as discuss recent studies on the role of histone deacetylases in splicing activities.


Asunto(s)
Epigénesis Genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN , Animales , Enfermedad/etiología , Enfermedad/genética , Histona Desacetilasas/metabolismo , Humanos , Modelos Genéticos , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Sitios de Empalme de ARN , Proteínas de Unión al ARN/metabolismo , Factores de Empalme Serina-Arginina
18.
Clin Epigenetics ; 4(1): 5, 2012 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-22414492

RESUMEN

The zinc-dependent mammalian histone deacetylase (HDAC) family comprises 11 enzymes, which have specific and critical functions in development and tissue homeostasis. Mounting evidence points to a link between misregulated HDAC activity and many oncologic and nononcologic diseases. Thus the development of HDAC inhibitors for therapeutic treatment garners a lot of interest from academic researchers and biotechnology entrepreneurs. Numerous studies of HDAC inhibitor specificities and molecular mechanisms of action are ongoing. In one of these studies, mass spectrometry was used to characterize the affinities and selectivities of HDAC inhibitors toward native HDAC multiprotein complexes in cell extracts. Such a novel approach reproduces in vivo molecular interactions more accurately than standard studies using purified proteins or protein domains as targets and could be very useful in the isolation of inhibitors with superior clinical efficacy and decreased toxicity compared to the ones presently tested or approved. HDAC inhibitor induced-transcriptional reprogramming, believed to contribute largely to their therapeutic benefits, is achieved through various and complex mechanisms not fully understood, including histone deacetylation, transcription factor or regulator (including HDAC1) deacetylation followed by chromatin remodeling and positive or negative outcome regarding transcription initiation. Although only a very low percentage of protein-coding genes are affected by the action of HDAC inhibitors, about 40% of noncoding microRNAs are upregulated or downregulated. Moreover, a whole new world of long noncoding RNAs is emerging, revealing a new class of potential targets for HDAC inhibition. HDAC inhibitors might also regulate transcription elongation and have been shown to impinge on alternative splicing.

19.
Discov Med ; 11(59): 349-58, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21524388

RESUMEN

14-3-3s are phosphoserine- or phosphothreonine-binding proteins, which are involved in a variety of cellular processes, including gene regulation, differentiation, cell cycle progression, and metabolism. Their mechanism of regulation is typically to induce a conformational change on the target phosphoprotein, which can alter its catalytic activity, localization within the cell, or interactions with other proteins. In addition, 14-3-3s can act as a scaffolding protein, leading to multiprotein complex formation on the target phosphoprotein. As such, 14-3-3s are integrated into a number of important phosphorylation-dependent signaling pathways. In this review, we will examine the interaction of 14-3-3 with chromatin and chromatin modifying enzymes, specifically with phosphorylated histone H3 and histone deacetyltransferases, respectively. Through diverse mechanisms, these interactions directly affect the expression of target genes, many of which are known oncogenes and lead to tumorigenesis and metastasis. Various research studies have indicated that the mechanism of 14-3-3 interaction and its role in transcription is complex and diverse, and likely involving additional components as yet undefined.


Asunto(s)
Proteínas 14-3-3/metabolismo , Regulación de la Expresión Génica , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Proteínas 14-3-3/química , Animales , Humanos , Neoplasias/metabolismo , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA