Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Mol Genet Metab ; 134(4): 309-316, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34823997

RESUMEN

Cystinosis is an autosomal recessive lysosomal storage disorder caused by mutations in the CTNS gene encoding the lysosomal cystine transporter, cystinosin, and leading to multi-organ degeneration including kidney failure. A clinical trial for cystinosis is ongoing to test the safety and efficacy of transplantation of autologous hematopoietic stem and progenitor cells (HSPCs) ex vivo gene-modified to introduce functional CTNS cDNA. Preclinical studies in Ctns-/- mice previously showed that a single HSPC transplantation led to significant tissue cystine decrease and long-term tissue preservation. The main mechanism of action involves the differentiation of the transplanted HSPCs into macrophages within tissues and transfer of cystinosin-bearing lysosomes to the diseased cells via tunneling nanotubes. However, a major concern was that the most common cystinosis-causing mutation in humans is a 57-kb deletion that eliminates not only CTNS but also the adjacent sedopheptulose kinase SHPK/CARKL gene encoding a metabolic enzyme that influences macrophage polarization. Here, we investigated if absence of Shpk could negatively impact the efficiency of transplanted HSPCs to differentiate into macrophages within tissues and then to prevent cystinosis rescue. We generated Shpk knockout mouse models and detected a phenotype consisting of perturbations in the pentose phosphate pathway (PPP), the metabolic shunt regulated by SHPK. Shpk-/- mice also recapitulated the urinary excretion of sedoheptulose and erythritol found in cystinosis patients homozygous for the 57-kb deletion. Transplantation of Shpk-/--HSPCs into Ctns-/- mice resulted in significant reduction in tissue cystine load and restoration of Ctns expression, as well as improved kidney architecture comparable to WT-HSPC recipients. Altogether, these data demonstrate that absence of SHPK does not alter the ability of HSPCs to rescue cystinosis, and then patients homozygous for the 57-kb deletion should benefit from ex vivo gene therapy and can be enrolled in the ongoing clinical trial. However, because of the limits inherent to animal models, outcomes of this patient population will be carefully compared to the other enrolled subjects.


Asunto(s)
Cistinosis/terapia , Trasplante de Células Madre Hematopoyéticas/métodos , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Diferenciación Celular , Cistinosis/metabolismo , Modelos Animales de Enfermedad , Terapia Genética , Células Madre Hematopoyéticas/citología , Metabolómica , Ratones , Ratones Endogámicos C57BL , Vía de Pentosa Fosfato , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
2.
Sci Rep ; 9(1): 14529, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601865

RESUMEN

Tunneling nanotubes (TNTs) are cellular extensions enabling cytosol-to-cytosol intercellular interaction between numerous cell types including macrophages. Previous studies of hematopoietic stem and progenitor cell (HSPC) transplantation for the lysosomal storage disorder cystinosis have shown that HSPC-derived macrophages form TNTs to deliver cystinosin-bearing lysosomes to cystinotic cells, leading to tissue preservation. Here, we explored if macrophage polarization to either proinflammatory M1-like M(LPS/IFNγ) or anti-inflammatory M2-like M(IL-4/IL-10) affected TNT-like protrusion formation, intercellular transport and, ultimately, the efficacy of cystinosis prevention. We designed new automated image processing algorithms used to demonstrate that LPS/IFNγ polarization decreased bone marrow-derived macrophages (BMDMs) formation of protrusions, some of which displayed characteristics of TNTs, including cytoskeletal structure, 3D morphology and size. In contrast, co-culture of macrophages with cystinotic fibroblasts yielded more frequent and larger protrusions, as well as increased lysosomal and mitochondrial intercellular trafficking to the diseased fibroblasts. Unexpectedly, we observed normal protrusion formation and therapeutic efficacy following disruption of anti-inflammatory IL-4/IL-10 polarization in vivo by transplantation of HSPCs isolated from the Rac2-/- mouse model. Altogether, we developed unbiased image quantification systems that probe mechanistic aspects of TNT formation and function in vitro, while HSPC transplantation into cystinotic mice provides a complex in vivo disease model. While the differences between polarization cell culture and mouse models exemplify the oversimplicity of in vitro cytokine treatment, they simultaneously demonstrate the utility of our co-culture model which recapitulates the in vivo phenomenon of diseased cystinotic cells stimulating thicker TNT formation and intercellular trafficking from macrophages. Ultimately, we can use both approaches to expand the utility of TNT-like protrusions as a delivery system for regenerative medicine.


Asunto(s)
Macrófagos/citología , Nanotubos/química , Orgánulos/metabolismo , Animales , Apoptosis , Técnicas de Cocultivo , Cistinosis/metabolismo , Citocinas/metabolismo , Citoesqueleto/metabolismo , Femenino , Fibroblastos/citología , Proteínas Fluorescentes Verdes/metabolismo , Células Madre Hematopoyéticas/citología , Inflamación , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Células Madre/citología , Proteínas de Unión al GTP rac/genética , Proteína RCA2 de Unión a GTP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA