Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Commun Chem ; 7(1): 131, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851819

RESUMEN

Nanoparticle-based therapies are emerging as a pivotal frontier in biomedical research, showing their potential in combating infections and facilitating wound recovery. Herein, selenium-tellurium dopped copper oxide nanoparticles (SeTe-CuO NPs) with dual photodynamic and photothermal properties were synthesized, presenting an efficient strategy for combating bacterial infections. In vitro evaluations revealed robust antibacterial activity of SeTe-CuO NPs, achieving up to 99% eradication of bacteria and significant biofilm inhibition upon near-infrared (NIR) irradiation. Moreover, in vivo studies demonstrated accelerated wound closure upon treatment with NIR-activated SeTe-CuO NPs, demonstrating their efficacy in promoting wound healing. Furthermore, SeTe-CuO NPs exhibited rapid bacterial clearance within wounds, offering a promising solution for wound care. Overall, this versatile platform holds great promise for combating multidrug-resistant bacteria and advancing therapeutic interventions in wound management.

2.
ACS Omega ; 9(13): 15271-15281, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38585130

RESUMEN

Germin and Germin-like proteins (GLPs) are a class of plant proteins that are part of the Cupins superfamily, found in several plant organs including roots, seeds, leaves, and nectar glands. They play a crucial role in plant defense against pathogens and environmental stresses. Herein, this study focused on the promoter analysis of OsGLP12-3 in rice cultivar Swat-1 to elucidate its regulation and functions. The region (1863bp) of the OsGLP12-3 promoter from Swat-1 genomic DNA was amplified, purified, quantified, and cloned using Topo cloning technology, followed by sequencing. Further in silico comparative analysis was conducted between the OsGLP12-3 promoters from Nipponbare and Swat-1 using the Plant CARE database, identifying 24 cis-acting regulatory elements with diverse functions. These elements exhibited distinct distribution patterns in the 2 rice varieties. The OsGLP12-3 promoter revealed an abundance of regulatory elements associated with biotic and abiotic stress responses. Computational tools were employed to analyze the regulatory features of this region. In silico expression analysis of OsGLP12-3, considering various developmental stages, stress conditions, hormones, and expression timing, was performed using the TENOR tool. Pairwise alignment indicated 86% sequence similarity between Nipponbare and Swat-1. Phylogenetic analysis was conducted to explore the evolutionary relationship between the OsGLP12-3 and other plant GLPs. Additionally, 2 unique regulatory elements were modeled and docked, GARE and MBS to understand their hydrogen bonding interactions in gene regulation. The study highlights the importance of OsGLP12-3 in plant defense against biotic and abiotic stresses, supported by its expression patterns in response to various stressors and the presence of specific regulatory elements within its promoter region.

3.
Sci Rep ; 13(1): 10088, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344519

RESUMEN

Cancer is among the top causes of death, accounting for an estimated 9.6 million deaths in 2018, it appeared that approximately 500,000 people die from cancer in the United States alone annually. The SHP2 plays a major role in regulation of cell growth, proliferation, and differentiation, and functional upregulation of this enzyme is linked to oncogenesis and developmental disorders. SHP2 activity has been linked to several cancer types for which no drugs are currently available. In our study, we aimed to design peptide inhibitors against the SHP2 mutant. The crystal structure of the human Src SH2-PQpYEEIPI peptide mutant was downloaded from the protein databank. We generated several peptides from the native wild peptide using an in silico mutagenesis method, which showed that changes (P302W, Y304F, E306Q, and Q303A) might boost the peptide's affinity for binding to SHP2. Furthermore, the dynamical stability and binding affinities of the mutated peptide were confirmed using Molecular dynamics simulation and Molecular Mechanics with Generalized Born and Surface Area Solvation free energy calculations. The proposed substitution greatly enhanced the binding affinity at the residue level, according to a study that decomposed energy into its component residues. Our proposed peptide may prevent the spread of cancer by inhibiting SHP2, according to our detailed analyses of binding affinities.


Asunto(s)
Neoplasias , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Humanos , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Neoplasias/genética , Péptidos/genética , Péptidos/farmacología , Mutagénesis , Simulación de Dinámica Molecular
4.
Materials (Basel) ; 15(14)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35888280

RESUMEN

The use of medical devices for therapeutic and diagnostic purpose is globally increasing; however, bacterial colonization on therapeutic devices can occur, causing severe infections in the human body. It has become an issue for public health. It is necessary to develop a nanomaterial based on photothermal treatment to kill toxic bacterial strains. Appropriately, high photothermal conversion and low-cost powerful photothermal agents have been investigated. Recently, gold nanocomposites have attracted great interest in biological applications. Here, we prepared rod-shaped Se-Te@Au nanocomposites of about 200 nm with uniform shape and surface-coated with gold nanoparticles for the first time showing high anti-bacterial and anti-cancer activities. Se-Te@Au showed proper structural consistency and natural resistance to bacterial and cancer cells. The strong absorption and high photothermal conversion efficacy made it a good photothermal agent material for the photothermal treatment of bacterial and cancer cells. The Se-Te@Au rod showed excellent anti-bacterial efficacy against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, with highest recorded inhibition zones of 25 ± 2 mm and 22 ± 2 mm, respectively. More than 99% of both types of strains were killed after 5 min with a near-infrared (NIR) laser at the very low concentration of 48 µg/mL. The Se-Te@Au rod's explosion in HeLa cells was extensively repressed and demonstrated high toxicity at 100 µg/mL for 5 min when subjected to an NIR laser. As a result of its high photothermal characteristics, the exceptional anti-bacterial and anti-cancer effects of the Se-Te@Au rod are considerably better than those of other methods previously published in articles. This study could open a new framework for sterilization applications on the industrial level.

5.
Int J Biol Macromol ; 208: 819-832, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35364209

RESUMEN

As an abundant biopolymer, lignin gains interest owing to its renewable nature and polyphenolic structure. It possesses many biological activities such as antioxidant activity, antimicrobial activity, and biocompatibility. Studies are being carried out to relate the biological activities to the polyphenolic structures. These traits present lignin as a natural compound being used in biomedical field. Lignin nanoparticles (LNPs) are being investigated for safe use in drug and gene delivery, and lignin-based hydrogels are being explored as wound dressing materials, in tissue engineering and 3D printing. In addition, lignin and its derivatives have shown the potential to treat diabetic disease. This review summarizes latest research results on the biological activities of lignin and highlights potential applications exampled by selective studies. It helps to transform lignin from a waste material into valuable materials and products.


Asunto(s)
Lignina , Nanopartículas , Técnicas de Transferencia de Gen , Hidrogeles/química , Hidrogeles/uso terapéutico , Lignina/química , Lignina/uso terapéutico , Nanopartículas/química , Ingeniería de Tejidos
6.
Materials (Basel) ; 14(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34832332

RESUMEN

Innovations in nanotechnology have had an immense impact on medicine, such as in drug delivery, tissue engineering, and medical devices that combat different pathogens. The pathogens that may cause biofilm-associated nosocomial diseases are multidrug-resistant (MDR) bacteria, such as Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), including both Gram-positive and Gram-negative bacterial species. About 65-80% of infections are caused by biofilm-associated pathogens creating a move in the international community toward developing antimicrobial therapies to eliminate such pathogenic infections. Several nanomaterials (NMs) have been discovered and significantly employed in various antipathogenic therapies. These NMs have unique properties of singlet oxygen production, high absorption of near-infrared irradiation, and reasonable conversion of light to heat. In this review, functionalized NPs that combat different pathogenic infections are introduced. This review highlights NMs that combat infections caused by multidrug-resistant (MDR) and other pathogenic microorganisms. It also highlights the biomedical application of NPs with regard to antipathogenic activities.

7.
Saudi J Biol Sci ; 28(1): 970-979, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33424389

RESUMEN

The present experiment was designed to isolate bacterial strains from the brick kiln soil and to check the activity and enzyme kinetics of amylase from these isolates. The bacterial colonies were isolated from soil samples through the serial dilution method. The bacterial isolates were identified through morphological, electron microscopic and molecular analysis. The 16S ribosomal RNA sequences of the isolates IR-1, IR-2, IR-3, IR-8, and IR-9 showed high similarities with Bacillus tequilensis, Bacillus paramycoides, Proteus alimentorum, Bacillus wiedmannii, and Pseudomonas aeruginosa, respectively. All of the bacterial isolates showed a positive catalase activity except IR-9. Furthermore, the isolates showed variable antagonistic effects against different bacterial pathogens. All of the strains produced indole acetic acid (IAA), and the concentrations increased in the presence of tryptophan application. The isolates showed the amylase enzyme activity and maximum activity of isolates was achieved in 4% starch concentration. The IR-9 isolate showed the highest amylase activity of 5.9 U/ml. The V max values of the extracellular amylase from different bacterial isolates ranged between 12.90 and 50.00 IU ml-1. The lowest K m value of 6.33 mg starch was recorded for IR-8 and the maximum K cat value of 2.50 min-1 was observed for IR-3. The amylase activity of the isolates was significantly affected by a range of different incubation time, temperature, and pH values. Further tests are required before the potential utilization of these isolates for amylase production, and in the biopesticide and biofertilizer applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA