Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Genet Eng Biotechnol ; 22(1): 100360, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38494244

RESUMEN

BACKGROUND: Somatic embryogenesis offers a reliable method for cucumber (Cucumis sativus L.) regeneration and genetic enhancement against Fusarium wilt. This study aimed to establish a tailored somatic embryogenesis system for Egyptian cultivars, fostering genetic improvements and Fusarium wilt-resistance lines. RESULTS: Employing the Optimal Arbitrary Design (OAD) approach, we optimized the induction medium, initiating prolific embryogenic calli (53.3 %) at 1 mg/L 2,4-D. The cotyledonary leaf (CL) was the preferred explant, showing 60 % embryogenic callus development. Bieth Alpha exhibited higher responsiveness, generating âˆ¼ 18 somatic embryos per explant compared to Prince's âˆ¼ 10. Somatic embryogenesis system validation used quantitative RT-PCR, showing Cucumis sativus splicing factor 3B subunit (CUS1) and an embryogenesis marker gene expression exclusively within embryogenic calli and mainly during embryogenesis initiation. Evaluating fungal toxin filtrate concentrations for selecting embryogenic calli, the S2 selection (25 % filtrate, four subculture cycles) was chosen for somatic embryo development. To gauge the ramifications of selection at the genetic stratum, an in-depth analysis was executed. A cluster analysis grounded in ISSR banding patterns revealed a distinct separation between in vivo-cultivated plants of the two cultivars and regenerated plants devoid of pathogen filtrate treatment or those regenerated post-filtrate treatment. This segregation distinctly underscores the discernible genetic impact of the selection process. CONCLUSIONS: The highest embryogenic capacity (53.3%) was achieved in this study by optimizing the induction stage, which demonstrated the optimal concentrations of BA and 2,4-D for induced proembryonic masses. Moreover, consistent gene expression throughout both stages of embryogenesis suggests that our system unequivocally follows the somatic embryogenesis pathway.

2.
Pak J Biol Sci ; 24(9): 997-1014, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34585553

RESUMEN

<b>Background and Objective:</b> Barley is considering one of the most important cereal crops at the local and global levels. It is ranked second in terms of nutritional importance after wheat and its flour contributes significantly to bridging the large nutritional gap in the production of Egyptian bread. The aim of this study concentrated on knowing and testing the genetic behaviour responsible for salinity stress tolerance in barley as trying to improve barley crop and increase its ability for abiotic stress resistance under Egyptian conditions. <b>Materials and Methods:</b> Twenty-one crosses and ten parents of barley with different responses to salinity tolerance were evaluated in this investigation under normal and salinity conditions. Yield and its components and some physiological traits related to salt stress tolerance were the most important studied attributes evaluated in this regard under both conditions. Moreover, SSR markers were used to evaluate and identified associated markers for salinity tolerance in selected hybrids and comparing among the ten barley parents. <b>Results:</b> The final results confirmed that the three testers; Giza 123, Giza 126 and Giza 2000 besides; the crosses; Line 1XTester 1 (Giza 125XGiza 123), Line 2XTester 1 (Giza 133XGiza 123), Line 1XTester 2 (Giza 125XGiza 126), Line 2XTester 2 (Giza 133XGiza 126) and Line 1XTester 3 (Giza 125XGiza 2000) exhibited highly salinity tolerance under saline stress treatment compared with the control experiment. Among 15 analyzed barley entries, the chosen set of 11 markers amplified 20 alleles with an average of 1.81, with a range from 1-4 alleles. <b>Conclusion:</b> The results of SSR analysis and the data on valued agricultural trait loci determined the genetic distance among parents and their hybrids, which is of an unlimited rate for breeders.


Asunto(s)
Hordeum/microbiología , Estrés Salino , Quimera/microbiología , Quimera/fisiología , Mapeo Cromosómico/métodos , Mapeo Cromosómico/estadística & datos numéricos , Egipto , Hordeum/fisiología
3.
Ecol Evol ; 2(7): 1663-75, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22957170

RESUMEN

Distribution of tropical rainforests in Southeastern Asia has changed over geo-logical time scale, due to movement of tectonic plates and/or global climatic changes. Shorea parvifolia is one of the most common tropical lowland rainforest tree species in Southeastern Asia. To infer population structure and demographic history of S. parvifolia, as indicators of temporal changes in the distribution and extent of tropical rainforest in this region, we studied levels and patterns of nucleotide polymorphism in the following five nuclear gene regions: GapC, GBSSI, PgiC, SBE2, and SODH. Seven populations from peninsular Malaysia, Sumatra, and eastern Borneo were included in the analyses. STRUCTURE analysis revealed that the investigated populations are divided into two groups: Sumatra-Malay and Borneo. Furthermore, each group contained one admixed population. Under isolation with migration model, divergence of the two groups was estimated to occur between late Pliocene (2.6 MYA) and middle Pleistocene (0.7 MYA). The log-likelihood ratio tests of several demographic models strongly supported model with population expansion and low level of migration after divergence of the Sumatra-Malay and Borneo groups. The inferred demographic history of S. parvifolia suggested the presence of a scarcely forested land bridge on the Sunda Shelf during glacial periods in the Pleistocene and predominance of tropical lowland rainforest at least in Sumatra and eastern Borneo.

4.
Genes Genet Syst ; 83(1): 55-66, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18379134

RESUMEN

Larch (Larix Mill.) is one of the most widely distributed tree genera in Eurasia. To determine population structure and to verify classification of five species and three varieties of the Eurasian Larix species, we investigated levels and patterns of nucleotide variation of two nuclear gene regions: the 4-coumarate coenzyme A ligase (4CL) and the coumarate 3-hydroxylase (C3H). In the 4CL region nucleotide diversity at silent sites (pi(sil)) varied between 0.0020 in L. gmelinii to 0.0116 in L. gmelinii var. japonica and in the C3H region between 0.0019 in L. kaempferi to 0.0066 in L. gmelinii var. japonica. In both gene regions statistically significant population differentiation (F(ST)) was detected among adjacent refugial populations of some species suggesting limited gene flow and/or long time isolation of some refugial populations. On the other hand, populations of L. sukaczewii from northwestern Russia, which was glaciated 20,000 years ago showed no differentiation. This result is consistent with recent postglacial origin of these populations. Haplotype composition of some of the investigated Eurasian Larix species suggested that they are considerably diverged. Some haplotypes were unique to individual species. Our results indicate that more intensive sampling especially from known refugial regions is necessary for inferring correct classification of Eurasian Larix species and inferring their postglacial migration.


Asunto(s)
Genes de Plantas , Variación Genética , Larix/clasificación , Larix/genética , Filogenia , Asia , Núcleo Celular/genética , ADN de Plantas/metabolismo , Europa (Continente) , Genética de Población , Geografía , Haplotipos , Reacción en Cadena de la Polimerasa , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA