Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
BMC Microbiol ; 24(1): 95, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519885

RESUMEN

BACKGROUND: The emergence of antimicrobial resistance in bacterial pathogens is a growing concern worldwide due to its impact on the treatment of bacterial infections. The "Trojan Horse" strategy has been proposed as a potential solution to overcome drug resistance caused by permeability issues. OBJECTIVE: The objective of our research was to investigate the bactericidal activity and mechanism of action of the "Trojan Horse" strategy using enterobactin conjugated with Ciprofloxacin and Fosfomycin against the antibiotic-resistant Escherichia coli strain OQ866153. METHODOLOGY: Enterobactin, a mixed ligand of E. coli OQ866153, was conjugated with Ciprofloxacin and Fosfomycin individually to aid active absorption via specific enterobactin binding proteins (FepABCDG). The effectiveness of the conjugates was assessed by measuring their bactericidal activity against E. coli OQ866153, as well as their ability to inhibit DNA gyrase enzyme and biofilm formation. RESULTS: The Fe+3-enterobactin-Ciprofloxacin conjugate effectively inhibited the DNA gyrase enzyme (Docking score = -8.597 kcal/mol) and resulted in a lower concentration (25 µg/ml) required to eliminate supercoiled DNA plasmids compared to the parent drug (35 µg/ml; Docking score = -6.264 kcal/mol). The Fe+3-Enterobactin-Fosfomycin conjugate showed a higher inhibition percentage (100%) of biofilm formation compared to Fosfomycin (21.58%) at a concentration of 2 mg/ml, with docking scores of -5.481 and -3.756 kcal/mol against UDP-N acetylglucosamine 1-carboxyvinyltransferase MurA. CONCLUSION: The findings of this study suggest that the "Trojan Horse" strategy using enterobactin conjugated with Ciprofloxacin and Fosfomycin can effectively overcome permeability issues caused by efflux proteins and enhance the bactericidal activity of these drugs against antibiotic-resistant strains of E. coli.


Asunto(s)
Antibacterianos , Fosfomicina , Antibacterianos/química , Fosfomicina/farmacología , Ciprofloxacina/farmacología , Escherichia coli , Enterobactina/química , Enterobactina/metabolismo , Enterobactina/farmacología , Girasa de ADN , Pruebas de Sensibilidad Microbiana
2.
Biochem Genet ; 62(5): 3920-3945, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38245887

RESUMEN

Microorganisms produce siderophores, which are secondary metabolites with a high affinity for iron. Siderophores have received significant attention due to their diverse applications in ecological and clinical research. In this study, siderophores production by Escherichia coli OQ866153 was optimized using two-stage statistical approach involving Plackett-Burman design (PBD) and response surface methodology (RSM) using central composite design (CCD). Out of 23 variables, succinate, tryptophan, Na2HPO4, CaCl2, agitation, and KH2PO4 were found to have the most significant effect on siderophores production in the first optimization stage with the highest SU% of 43.67%. In the second stage, RSM using CCD was utilized, and the optimal conditions were determined to be 0.3 g/l succinate, 0 g/l tryptophan, 6 g/l Na2HPO4, 0.1 g/l CaCl2, 150 RPM agitation, and 0.6 g/l KH2PO4, resulting in a maximum siderophore units (SU%) of 89.13%. The model was significant, as indicated by the model f-value of 314.14 (p-value = 0.0004) and coefficient of determination R2 of 0.9950. During validation experiments, the obtained maximum SU% was increased up to 87.1472%, which was two times as the value obtained under ordinary conditions (46.62%). The produced siderophores were purified and characterized using 1H, 13C NMR, IR spectroscopy. The obtained results indicated that the compound was enterobactin and entABCDEF genes were further detected in Escherichia coli OQ866153 extracted DNA. To our knowledge, this is the first report of statistical optimization for enterobactin synthesis by an E. coli strain isolated from a clinical source in Egypt.


Asunto(s)
Enterobactina , Escherichia coli , Sideróforos , Enterobactina/metabolismo , Enterobactina/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Sideróforos/biosíntesis , Sideróforos/genética
3.
BMC Complement Med Ther ; 23(1): 448, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087292

RESUMEN

BACKGROUND: The genus Syzygium (Myrtaceae) comprises several essential oil-rich species that are utilized traditionally for treating tooth infections and toothache. The current study aimed to extract essential oils (EOs) from the leaves of Syzygium samarangense and Syzygium malaccense cultivated in Egypt for the first time and screen their antimicrobial potential against oral-related pathogens. METHODS: The intended EOs were extracted using hydrodistillation (HD) by boiling fresh leaves with distilled water; supercritical fluid (SF) by extracting the dried leaves using supercritical CO2 at 40 °C and 150 bar; and the headspace (HS) in which the fresh leaves were heated in a glass vial and the vaporized aroma were analyzed. The volatile constituents were analyzed using GC/MS and identified by comparing the experimental Kovats' retention indices with the literature. The antimicrobial activity was assessed against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Candida albicans using agar diffusion, microwell dilution, and biofilm formation assays. Statistical significance (p < 0.05) was determined by applying one-way ANOVA and Duncan's post hoc test. RESULTS: The yield of the extracted EOs differs between the applied methods, and the SF approach harvested the maximum (0.52-0.46%). The GC-MS analysis of SF EOs revealed a discrepancy between the two species. Since S. malaccense showed an abundance of hydrocarbons represented mainly by squalene (60.60%), S. samarangense was deemed to have oxygenated sesquiterpenes exemplified in globulol (52.09%). On the other side, the HD and HS EOs were sequentially comparable, while differed in the percentage of their majors. γ-terpinene (33.06%) pioneered the HS-derived aroma of S. malaccense, while S. samarangense was abundant with α-pinene (30.18%). Concurrently, the HD EOs of S. malaccense and S. samarangense were commonly denoted by caryophyllene oxide (8.19%-18.48%), p-cymene (16.02%- 19.50%), and γ-terpinene (12.20%-17.84). Ultimately, both species EOs exhibited broad-spectrum antimicrobial potential, although the HD EO was more potent than the SF EO. The HD EOs of both species potently inhibited the growth of E. coli (MIC 3.75 µL/mL) and suppressed C. albicans biofilm formation by 83.43 and 87.27%, respectively. The SF-EOs efficiently suppressed the biofilm formation of Gram-positive bacteria by 76.45%-82.95%. CONCLUSION: EOs extracted from both species by different methods possessed a unique blend of volatile components with broad-spectrum antimicrobial activity. They were promoted as bioactive hits for controlling oral infections, however further investigations concerning their safety in clinical settings are needed.


Asunto(s)
Antiinfecciosos , Aceites Volátiles , Syzygium , Aceites Volátiles/química , Escherichia coli , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Fitoquímicos/farmacología
4.
AMB Express ; 13(1): 68, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37414961

RESUMEN

Endophytic fungi allied to plants have sparked substantial promise in discovering new bioactive compounds. In this study, propagation of the endophytic fungus Alternaria alternata HE11 obtained from Colocasia esculanta leaves led to the isolation of Ergosterol (1), ß-Sitosterol (2), Ergosterol peroxide (3), in addition to three dimeric naphtho-γ-pyrones, namely Fonsecinone A (4), Asperpyrone C (5), and Asperpyrone B (6), which were isolated from genus Alternaria for the first time. Structures of the isolated compounds were established on the basis of extensive 1D and 2D NMR and, MS measurements. The ethyl acetate extract, as well as compounds 1, 3, 4 and 6 were evaluated for their antimicrobial activity using agar well-diffusion and broth microdilution assays. Molecular docking study was carried out to explore the pharmacophoric moieties that governed the binding orientation of antibacterial active compounds to multidrug efflux transporter AcrB and the ATP binding site to E. coli DNA gyrase using MOE software. Results revealed that the most active antibacterial compounds 4 and 6 bind with high affinity in the phenylalanine-rich cage and are surrounded with other hydrophobic residues. The antiproliferative activity of all isolated compounds was in vitro evaluated using the human prostatic adenocarcinoma cell lines DU-145, PC-3, PC-3 M, 22Rv1 and CWR-R1ca adopting MTT assay. Compound 4 was the most active against almost all tested cell lines, with IC50 values 28.6, 21.6, 17.1 and 13.3 against PC-3, PC-3 M, 22Rv1 and CWR-R1ca cell lines, respectively.

5.
BioTechnologia (Pozn) ; 103(2): 169-184, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36606072

RESUMEN

The phenomenon of antibiotic resistance has dramatically increased in the last few decades, especially in enterobacterial pathogens. Different strains of Escherichia coli have been reported to produce a variety of structurally different siderophores. In the present study, 32 E. coli strains were collected from different clinical settings in Cairo, Egypt and subjected to the antibiotic susceptibility test by using 19 antibiotics belonging to 7 classes of chemical groups. The results indicated that 31 strains could be considered as extensively drug-resistant and only one strain as pan drug-resistant. Siderophores production by all the tested E. coli strains was determined qualitatively and quantitatively. Two E. coli strains coded 21 and 49 were found to be the most potent siderophores producers, with 79.9 and 46.62%, respectively. Bacterial colonies with cured plasmids derived from strain 49 showed susceptibility to all the tested antibiotics. Furthermore, E. coli DH5α cells transformed with the plasmid isolated from E. coli strain 21 or E. coli strain 49 were found to be susceptible to ansamycins, quinolones, and sulfonamide groups of antibiotics. In contrast, both plasmid-cured and plasmid-transformed strains did not produce siderophores, indicating that the genes responsible for siderophores production were located on plasmids and regulated by genes located on the chromosome. On the basis of the obtained results, it could be concluded that there is a positive correlation between antibiotic resistance, especially to quinolones and sulfonamide groups, and siderophores production by E. coli strains used in this study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA