Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Chempluschem ; 88(11): e202300326, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37786294

RESUMEN

5-Hydroxymethylfurfural (5-HMF) synthesized through glucose conversion requires Lewis acid (L) site for isomerization and Brønsted acid (B) site for dehydration. The objective of this work is to investigate the influence of the metal type of Al-SBA-15-supported phosphates of Cr, Zr, Nb, Sr, and Sn on glucose conversion to 5-HMF in a NaCl-H2 O/n-butanol biphasic solvent system. The structural and acid property of all supported metal phosphate samples were fully verified by several spectroscopic methods. Among those catalysts, CrPO/Al-SBA-15 provided the best performance with the highest glucose conversion and 5-HMF yield, corresponding to the highest total acidity of 0.65 mmol/g and optimal L/B ratio of 1.88. For CrPO/Al-SBA-15, another critical parameter is the phosphate-to-chromium ratio. Moreover, DFT simulation of glucose conversion to 5-HMF on the surface of the optimized chromium phosphate structure reveals three steps of fructose dehydration on the Brønsted acid site. Finally, the optimum reaction condition, reusability, and leaching test of the best catalyst were determined. CrPO/Al-SBA-15 is a promising catalyst for glucose conversion to high-value-added chemicals in future biorefinery production.

2.
Environ Sci Pollut Res Int ; 30(39): 90328-90340, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36520297

RESUMEN

Hexavalent chromium (Cr(VI)) is carcinogenic to organisms. It is widely used in several industries. In this work, we investigated the Cr(VI) photocatalytic reaction with a scavenger on Pt and Cu-TiO2 photocatalysts. Metal-deposited TiO2 was successfully synthesized by a photodeposition method. TEM-EDX, XRD, and UV-DR were analyzed to study the changes in morphology, crystallinity, and the electronic properties of photocatalysts. The rate of charge recombination during reduction and photoluminescence (PL) spectroscopy was used to examine the catalysts in depth. Cu-TiO2 demonstrates the highest photocatalytic activity for 63.74% of Cr(VI) removal. To understand the photoreduction of Cr(VI), the fate transformation of Cr species during the adsorption and reaction was investigated using in situ XANES. The results demonstrated that the Cr(III) was noticeably main component adsorbed over the catalyst, particularly in Cu-TiO2. The presence of humic acid can boost the Cr(VI) removal efficiency and enhanced the Cr(VI) reduction to Cr(III). We believe that the extensive research on Cr(VI) photoreduction on metal-TiO2 heterojunction will provide a comprehensive understanding of catalytic behaviors, paving the way for rationally designed novel Cr reduction catalysts.


Asunto(s)
Cromo , Nanopartículas del Metal , Oxidación-Reducción , Cromo/química , Titanio/química , Catálisis
3.
RSC Adv ; 12(24): 15526-15533, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35685179

RESUMEN

CuFe2O4 spinel oxide has attracted research interest because of its versatile practical applications, especially for catalysis. In this study, nanometre-sized CuFe2O4 particles were prepared by three different methods, including nanospace confinement in SBA-15, hard template removal, and sol-gel combustion. The relationship between structure, size, magnetic behaviour, and reducibility of the catalysts was further investigated by various advanced techniques. Samples prepared by impregnation and hard template removal show high surface area and small crystallite size with superparamagnetic behaviour. In contrast, the sol-gel sample exhibits ferromagnetic properties with a large crystallite size and low surface area. Although all samples present a tetragonal crystal structure, the distributions of Fe and Cu cations in tetrahedral and octahedral sites in the spinel structure are different. The reducibility results demonstrate that the supported CuFe2O4/SBA-15 shows the lowest reduction profile. These results could suggest that the synthesis method strongly affects the crystal properties and cation distribution in the spinel structure, microstructure, surface area and reducibility, which are among the most relevant physicochemical properties for the catalytic activity.

4.
Nanomaterials (Basel) ; 12(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35159819

RESUMEN

The photocatalytic reduction of carbon dioxide (CO2) into value-added chemicals is considered to be a green and sustainable technology, and has recently gained considerable research interest. In this work, titanium dioxide (TiO2) supported Pt, Pd, Ni, and Cu catalysts were synthesized by photodeposition. The formation of various metal species on an anatase TiO2 surface, after ultraviolet (UV) light irradiation, was investigated insightfully by the X-ray absorption near edge structure (XANES) technique. CO2 reduction under UV-light irradiation at an ambient pressure was demonstrated. To gain an insight into the charge recombination rate during reduction, the catalysts were carefully investigated by the intensity modulated photocurrent spectroscopy (IMPS) and photoluminescence spectroscopy (PL). The catalytic behaviors of the catalysts were investigated by density functional theory using the self-consistent Hubbard U-correction (DFT+U) approach. In addition, Mott-Schottky measurement was employed to study the effect of energy band alignment of metal-semiconductor on CO2 photoreduction. Heterojunction formed at Pt-, Pd-, Ni-, and Cu-TiO2 interface has crucial roles on the charge recombination and the catalytic behaviors. Furthermore, it was found that Pt-TiO2 provides the highest methanol yield of 17.85 µmol/gcat/h, and CO as a minor product. According to the IMPS data, Pt-TiO2 has the best charge transfer ability, with the mean electron transit time of 4.513 µs. We believe that this extensive study on the junction between TiO2 could provide a profound understanding of catalytic behaviors, which will pave the way for rational designs of novel catalysts with improved photocatalytic performance for CO2 reduction.

5.
Chemosphere ; 292: 133516, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34990721

RESUMEN

The thermochemical conversion of abundant renewable resources through pyrolytic catalysis cracking (PCC) is one of the most promising technologies for producing green biofuels. In this study, the pyrolysis of palm oil was investigated over a sustainable CaO-based catalyst derived from waste gypsum. PCC was conducted in a continuous packed-bed reactor under atmospheric pressure without purge gas. The effects of Mg doping and reaction temperature were also examined. A wet ball milling process was used to prepare the well-mixed catalysts and to subsequently form a heterojunction structure between the CaO and MgO particles. CaO was synthesized using the Ca(OH)2 derived from the reaction between gypsum and sodium hydroxide. The pyrolytic oil was separated from the crude oil to remove water and other impurities. The pyrolytic oil was then distilled following ASTM D86, and the three separated products were classified as bio-gasoline, bio-kerosene, and bio-diesel. The highest renewable light fuel volume (bio-gasoline and bio-kerosene) of about 75% (74 %wt.) was obtained at a reaction temperature of 525 °C with 10% MgCO3 content. The percent volume of light fuel increased with increasing reaction temperature. Renewable light fuel production over the Mg-doped CaO-based catalyst was related to both the Mg content and reaction temperature.


Asunto(s)
Magnesio , Pirólisis , Biocombustibles , Calcio , Sulfato de Calcio , Catálisis , Calor
6.
J Environ Sci (China) ; 32: 207-16, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26040747

RESUMEN

Mercury, generally found in natural gas, is extremely hazardous. Although average mercury levels are relatively low, they are further reduced to comply with future mercury regulations, which are stringent in order to avoid releasing to the environment. Herein, vapor mercury adsorption was therefore investigated using two kinds of supports, granular activated carbon (GAC) and titanium dioxide (TiO2). Both supports were impregnated by silver (5 and 15 wt.%), before testing against a commercial adsorbent (sulfur-impregnated activated carbon, SAC). The adsorption isotherm, kinetics, and its thermodynamics of mercury adsorption were reported. The results revealed that Langmuir isotherm provided a better fit to the experimental data. Pseudo second-order was applicable to describe adsorption kinetics. The higher uniform Ag dispersion was a key factor for the higher mercury uptake. TiO2 supported silver adsorbent showed higher mercury adsorption than the commercial one by approximately 2 times. Chemisorption of mercury onto silver active sites was confirmed by an amalgam formation found in the spent adsorbents.


Asunto(s)
Carbón Orgánico/química , Mercurio/aislamiento & purificación , Gas Natural/análisis , Plata/química , Titanio/química , Adsorción , Microscopía Electrónica de Rastreo , Propiedades de Superficie , Termodinámica , Volatilización , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA