Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38543113

RESUMEN

The PEG-coated ferrite nanoparticles Co0.2Mn0.6Zn0.2Fe2O4 (X1), Co0.4Mn0.4Zn0.2Fe2O4 (X2), and Co0.6Mn0.2Zn0.2Fe2O4 (X3) were synthesized by the coprecipitation method. The nanoparticles were characterized by XRD, Raman, VSM, XPS, and TEM. The magnetic hyperthermia efficiency (MH) was determined for PEG-coated nanoparticles using an alternating magnetic field (AMF). X2 nanoparticles displayed the highest saturation magnetization and specific absorption rate (SAR) value of 245.2 W/g for 2 mg/mL in a water medium. Based on these properties, X2 nanoparticles were further evaluated for antiproliferative activity against HCT116 cells at an AMF of 495.25 kHz frequency and 350 G strength, using MTT, colony formation, wound healing assays, and flow cytometry analysis for determining the cell viability, clonogenic property, cell migration ability, and cell death of HCT116 cells upon AMF treatment in HCT116 cells, respectively. We observed a significant inhibition of cell viability (2% for untreated control vs. 50% for AMF), colony-forming ability (530 cells/colony for untreated control vs. 220 cells/colony for AMF), abrogation of cell migration (100% wound closure for untreated control vs. 5% wound closure for AMF), and induction of apoptosis-mediated cell death (7.5% for untreated control vs. 24.7% for AMF) of HCT116 cells with respect to untreated control cells after AMF treatment. Collectively, these results demonstrated that the PEG-coated (CoMnZn-Fe2O4) mixed ferrite nanoparticles upon treatment with AMF induced a significant antiproliferative effect on HCT116 cells compared with the untreated cells, indicating the promising antiproliferative potential of the Co0.4Mn0.4Zn0.2Fe2O4 nanoparticles for targeting colorectal cancer cells. Additionally, these results provide appealing evidence that ferrite-based nanoparticles using MH could act as potential anticancer agents and need further evaluation in preclinical models in future studies against colorectal and other cancers.

2.
Phys Chem Chem Phys ; 26(7): 6058-6067, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38295376

RESUMEN

Metal halide perovskites show remarkable optical properties and useful applications in optoelectronic devices. However, the instability of three-dimensional (3D) metal halide perovskites limits their applications, leading to the emergence of more stable two-dimensional (2D) metal halide perovskites. Herein, we present a facile synthesis of the 2D hybrid metal halide perovskite (EDA)(MA)n-1PbnBr3n+1 (EDA: ethylene diammonium, MA: methylammonium), where n = 1-6, and MAPbBr3 perovskite layers using an anti-solvent co-precipitation technique. The synthesized materials exhibited tunable optical properties, and the color emissions of pure EDAPbBr4 and (EDA)(MA)2Pb3Br10 perovskites were successfully tailored by altering halide anion layers. The band gap decreases as the value of n in the (EDA)(MA)n-1PbnBr3n+1 compound increases from 1 to 6. The as-prepared materials were characterized using X-ray diffraction (XRD) technique, Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), photoluminescence spectroscopy (PL), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDX). Finally, the stability of the 2D hybrid metal halide perovskite structures was evaluated under ambient conditions over different periods. Their tunable color emission was investigated and robust fluorescence was observed after 55 days. Thus, this study provides valuable insights into the synthesis and characterization of 2D hybrid metal halide perovskites for tunable color emission, highlighting their potential for use in various optoelectronic applications.

3.
Sci Rep ; 13(1): 15654, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730862

RESUMEN

Cobalt oxide, nickel oxide and cobalt/nickel binary oxides were synthesised by electrodeposition. To fine tune composition of CoNi alloys, growth parameters including voltage, electrolyte pH/concentration and deposition time were varied. These produced nanomaterials were used as binder free electrodes in supercapacitor cells and tested using three electrode setup in 2 MKOH aqueous electrolyte. Cyclic voltammetry and galvanostatic charge/discharge were used at different scan rates (5-100 mV/s) and current densities (1-10 A/g) respectively to investigate the capacitive behaviour and measure the capacitance of active material. Electrochemical impedance spectroscopy was used to analyse the resistive/conductive behaviours of these electrodes in frequency range of 100 kHz to 0.01 Hz at applied voltage of 10 mV. Binary oxide electrode displayed superior electrochemical performance with the specific capacitance of 176 F/g at current density of 1 A/g. This hybrid electrode also displayed capacitance retention of over 83% after 5000 charge/discharge cycles. Cell displayed low solution resistance of 0.35 Ω along with good conductivity. The proposed facile approach to synthesise binder free blended metal electrodes can result in enhanced redox activity of pseudocapacitive materials. Consequently, fine tuning of these materials by controlling the cobalt and nickel contents can assist in broadening their applications in electrochemical energy storage in general and in supercapacitors in particular.

4.
Nanotechnology ; 34(18)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36716488

RESUMEN

Aiming to obtain hybrid magneto-plasmonic nanostructures, we have developed multisegmented and core/shell structured Fe-Au nanorods using template assisted electrochemical deposition. A facile method of tuning the growth pattern of multisegmented nanorods into core/shell structured is demonstrated. With a precise control of current density and deposition time, a brick-stacked wire like growth led to the formation of hollow nanotubes that could be further tuned to multilayered hollow nanotubes and core/shell structured nanorods. TEM imaging and STEM-EELS technique were used to explore the morphology, microstructure and the distribution of Au and Fe in the nanorods. The easy magnetization direction was found to be perpendicular to the nanorods' growth direction in the segmented nanorods. On the other hand, core/shell nanorods exhibited isotropic behavior. Our findings provide deeper insights into the fabrication of hybrid nanorods and the opportunity to tune the fabrication method to vary their morphology accordingly. Such studies will benefit design of hybrid nanorods with specific morphologies and physical properties and hence their integration into sensing, spintronics and other potential biomedical and technological applications.

5.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36499152

RESUMEN

Magnetically soft-soft MnFe2O4-Fe3O4 core-shell nanoparticles were synthesized through a seed-mediated method using the organometallic decomposition of metal acetyl acetonates. Two sets of core-shell nanoparticles (S1 and S2) of similar core sizes of 5.0 nm and different shell thicknesses (4.1 nm for S1 and 5.7 nm for S2) were obtained by changing the number of nucleating sites. Magnetic measurements were conducted on the nanoparticles at low and room temperatures to study the shell thickness and temperature dependence of the magnetic properties. Interestingly, both core-shell nanoparticles showed similar saturation magnetization, revealing the ineffective role of the shell thickness. In addition, the coercivity in both samples displayed similar temperature dependencies and magnitudes. Signatures of spin glass (SG) like behavior were observed from the field-cooled temperature-dependent magnetization measurements. It was suggested to be due to interface spin freezing. We observed a slight and non-monotonic temperature-dependent exchange bias in both samples with slightly higher values for S2. The effective magnetic anisotropy constant was calculated to be slightly larger in S2 than that in S1. The magnetothermal efficiency of the chitosan-coated nanoparticles was determined by measuring the specific absorption rate (SAR) under an alternating magnetic field (AMF) at 200-350 G field strengths and frequencies (495.25-167.30 kHz). The S2 nanoparticles displayed larger SAR values than the S1 nanoparticles at all field parameters. A maximum SAR value of 356.5 W/g was obtained for S2 at 495.25 kHz and 350 G for the 1 mg/mL nanoparticle concentration of ferrogel. We attributed this behavior to the larger interface SG regions in S2, which mediated the interaction between the core and shell and thus provided indirect exchange coupling between the core and shell phases. The SAR values of the core-shell nanoparticles roughly agreed with the predictions of the linear response theory. The concentration of the nanoparticles was found to affect heat conversion to a great extent. The in vitro treatment of the MDA-MB-231 human breast cancer cell line and HT-29 human colorectal cancer cell was conducted at selected frequencies and field strengths to evaluate the efficiency of the nanoparticles in killing cancer cells. The cellular cytotoxicity was estimated using flow cytometry and an MTT assay at 0 and 24 h after treatment with the AMF. The cells subjected to a 45 min treatment of the AMF (384.50 kHz and 350 G) showed a remarkable decrease in cell viability. The enhanced SAR values of the core-shell nanoparticles compared to the seeds with the most enhancement in S2 is an indication of the potential for tailoring nanoparticle structures and hence their magnetic properties for effective heat generation.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Humanos , Compuestos Férricos/química , Campos Magnéticos
6.
Nanomaterials (Basel) ; 11(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34835808

RESUMEN

Cobalt nanowires have been synthesized by electrochemical deposition using track-etched anodized aluminum oxide (AAO) templates. Nanowires with varying spacing-to-diameter ratios were prepared, and their magnetic properties were investigated. It is found that the nanowires' easy magnetization direction switches from parallel to perpendicular to the nanowire growth direction when the nanowire's spacing-to-diameter ratio is reduced below 0.7, or when the nanowires' packing density is increased above 5%. Upon further reduction in the spacing-to-diameter ratio, nanowires' magnetic properties exhibit an isotropic behavior. Apart from shape anisotropy, strong dipolar interactions among nanowires facilitate additional uniaxial anisotropy, favoring an easy magnetization direction perpendicular to their growth direction. The magnetic interactions among the nanowires were studied using the standard method of remanence curves. The demagnetization curves and Delta m (Δm) plots showed that the nanowires interact via dipolar interactions that act as an additional uniaxial anisotropy favoring an easy magnetization direction perpendicular to the nanowire growth direction. The broadening of the dipolar component of Δm plots indicate an increase in the switching field distribution with the increase in the nanowires' diameter. Our findings provide an important insight into the magnetic behavior of cobalt nanowires, meaning that it is crucial to design them according to the specific requirements for the application purposes.

7.
Nanomaterials (Basel) ; 11(5)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33924901

RESUMEN

Fe-based colloids with a core/shell structure consisting of metallic iron and iron oxide were synthesized by a facile hot injection reaction of iron pentacarbonyl in a multi-surfactant mixture. The size of the colloidal particles was affected by the reaction temperature and the results demonstrated that their stability against complete oxidation related to their size. The crystal structure and the morphology were identified by powder X-ray diffraction and transmission electron microscopy, while the magnetic properties were studied at room temperature with a vibrating sample magnetometer. The injection temperature plays a very crucial role and higher temperatures enhance the stability and the resistance against oxidation. For the case of injection at 315 °C, the nanoparticles had around a 10 nm mean diameter and revealed 132 emu/g. Remarkably, a stable dispersion was created due to the colloids' surface functionalization in a nonpolar solvent.

8.
RSC Adv ; 10(48): 28958-28964, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35520054

RESUMEN

In this paper, we report a one-pot chemical synthesis technique for the preparation of iron and iron-carbide nanoparticles. Mössbauer spectroscopy, X-ray diffraction and magnetometry were used as the main tools to identify the different phases of Fe-C present. The influence of experimental parameters on the structural and compositional properties of nanoparticles was investigated in detail. These particles show ferromagnetic behavior with room temperature coercivity higher than 300 Oe. The X-ray diffraction was complemented by Mössbauer spectroscopy and thermo-magnetic analysis. Remarkably, the carbon content in iron-carbide nanoparticles (carbon rich or carbon poor iron-carbides) can be modulated simply by varying the experimental conditions, like the reaction time, temperature and iron precursor concentration. Magnetic properties can be tailored based upon crystallographic structure and particles composition.

9.
Med Phys ; 45(7): 3258-3263, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29772078

RESUMEN

PURPOSE: To evaluate the thrombus maturity noninvasively providing the promise of much earlier and more accurate diagnosis of diseases ranging from stroke to myocardial infarction to deep vein thrombosis. METHODS: Magnetic spectroscopy of nanoparticle Brownian rotation (MSB), a form of magnetic particle spectroscopy sensitive to Brownian rotation of magnetic nanoparticles, was used for the detection and characterization of blood clots. The nanoparticles' relaxation time was quantified by scaling the MSB spectra in frequency to match the spectra from nanoparticles in a reference state. The nanoparticles' relaxation time, in the bound state, was used to characterize the nanoparticle binding to thrombin on the blood clot. The number of nanoparticles bound to the clot was also estimated. Both the relaxation time and the weight of bound nanoparticles were obtained for clots of several ages, reflecting different stages of development and organization. The impact of clot development was explored using functionalized nanoparticles present during clot formation. RESULTS: The relaxation time of the bound nanoparticles decreases for more mature, organized clots. The number of nanoparticles able to bind the clot diminishes quantitatively with clot age. On mature clots, the nanoparticles bind the thrombin on the surface while for developing clots the nanoparticles bind several thrombin molecules or become trapped in the clot matrix during formation. CONCLUSIONS: By estimating the magnetic nanoparticles' relaxation time the clot age and organization can be predicted. The purposed methods are quick and minimally invasive for in vivo applications.


Asunto(s)
Coagulación Sanguínea , Nanopartículas de Magnetita/química , Análisis Espectral , Trombosis de la Vena/diagnóstico , Trombosis de la Vena/fisiopatología , Humanos
10.
Phys Med Biol ; 62(20): 8102-8115, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28872052

RESUMEN

A series of techniques have been developed to use magnetic nanoparticles as biosensors to characterize their local microenvironment. Two approaches have been used to obtain quantitative information: model based approaches and scaling based approaches. We have favored scaling based approaches, because approximations made in models can lead to limitations in the accuracy. Currently all the scaling approaches use harmonic ratios to retrieve physical parameters like temperature, viscosity and relaxation time. In this work, we showed that the phase angle of the signal at a single harmonic frequency is an alternative to the ratio. The phase angle is nanoparticle density-independent, and can be used to improve sensitivity, enabling us to measure smaller biomedical effects. With the phase angle as an example, we showed that scaling methods are general and do not depend on specific approximations. We showed that the same scaling techniques can be used with both the phase angle and harmonic ratio because they both depend on the same combinations of physical parameters. Using the phase angle improves the precision and using the combination of phase angles and harmonic ratio provides the best precision.


Asunto(s)
Técnicas Biosensibles , Magnetismo , Nanopartículas/química , Temperatura
11.
AIP Adv ; 7(5): 056723, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28289550

RESUMEN

Deep vein thrombosis, the development of blood clots in the peripheral veins, is a very serious, life threatening condition that is prevalent in the elderly. To deliver proper treatment that enhances the survival rate, it is very important to detect thrombi early and at the point of care. We explored the ability of magnetic particle spectroscopy (MSB) to detect thrombus via specific binding of aptamer functionalized magnetic nanoparticles with the blood clot. MSB uses the harmonics produced by nanoparticles in an alternating magnetic field to measure the rotational freedom and, therefore, the bound state of the nanoparticles. The nanoparticles' relaxation time for Brownian rotation increases when bound [A.M. Rauwerdink and J. B. Weaver, Appl. Phys. Lett. 96, 1 (2010)]. The relaxation time can therefore be used to characterize the nanoparticle binding to thrombin in the blood clot. For longer relaxation times, the approach to saturation is more gradual reducing the higher harmonics and the harmonic ratio. The harmonic ratios of nanoparticles conjugated with anti-thrombin aptamers (ATP) decrease significantly over time with blood clot present in the sample medium, compared with nanoparticles without ATP. Moreover, the blood clot removed from the sample medium produced a significant MSB signal, indicating the nanoparticles are immobilized on the clot. Our results show that MSB could be a very useful non-invasive, quick tool to detect blood clots at the point of care so proper treatment can be used to reduce the risks inherent in deep vein thrombosis.

12.
Artículo en Inglés | MEDLINE | ID: mdl-34307836

RESUMEN

The extremely high sensitivity that has been suggested for magnetic particle imaging has its roots in the unique signal produced by the nanoparticles at the frequencies of the harmonics of the drive field. That sensitivity should be translatable to other methods that utilize magnetic nanoparticle probes, specifically towards magnetic nanoparticle spectroscopy that is used to measure molecular biomarker concentrations for an "in vivo ELISA" assay approach. In this paper, we translate the predicted sensitivity of magnetic particle imaging into a projected sensitivity limit for in vivo ELISA. The simplifying assumptions adopted are: 1) the limiting noise in the detection system is equivalent to the minimum detectable mass of nanoparticles; 2) the nanoparticle's signal arising from Brownian relaxation is completely eliminated by the molecular binding event, which can be accomplished by binding the nanoparticle to something so massive that it can no longer physically rotate and is large enough that Neel relaxation is minimal. Given these assumptions, the equation for the minimum concentration of molecular biomarker we should be able to detect is obtained and the in vivo sensitivity is estimated to be in the attomolar to zeptomolar range. Spectrometer design and nonspecific binding are the technical limitations that need to be overcome to achieve the theoretical limit presented.

13.
Nanomaterials (Basel) ; 6(11)2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-28335349

RESUMEN

The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and related phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications.

14.
Sci Rep ; 5: 15054, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26503506

RESUMEN

Disorder among surface spins is a dominant factor in the magnetic response of magnetic nanoparticle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8 ± 0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and become frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins. Monte Carlo simulations of a hollow particle corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures.

15.
Small ; 10(14): 2840-8, 2014 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-24706405

RESUMEN

A new approach to develop highly ordered magnetite (Fe3O4) nanoparticle-patterned nanohole arrays with desirable magnetic properties for a variety of technological applications is presented. In this work, the sub-100 nm nanohole arrays are successfully fabricated from a pre-ceramic polymer mold using spin-on nanoprinting (SNAP). These nanoholes a then filled with monodispersed, spherical Fe3O4 nanoparticles of about 10 nm diameter using a novel magnetic drag and drop procedure. The nanohole arrays filled with magnetic nanoparticles a imaged using magnetic force microscopy (MFM). Magnetometry and MFM measurements reveal room temperature ferromagnetism in the Fe3O4-filled nanohole arrays, while the as-synthesized Fe3O4 nanoparticles exhibit superparamagnetic behavior. As revealed by MFM measurements, the enhanced magnetism in the Fe3O4-filled nanohole arrays originates mainly from the enhanced magnetic dipole interactions of Fe3 O4 nanoparticles within the nanoholes and between adjacent nanoholes. Nanoparticle filled nanohole arrays can be highly beneficial in magnetic data storage and other applications such as microwave devices and biosensor arrays that require tunable and anisotropic magnetic properties.

16.
J Phys Condens Matter ; 25(42): 426003, 2013 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-24077419

RESUMEN

The development of positive magnetic entropy change in the case of ferromagnetic (FM) nanostructures is a rare occurrence. We observe positive magnetic entropy change in core/shell (Fe/γ-Fe2O3) and hollow (γ-Fe2O3) nanoparticles and its origin is attributed to a disordered state in the nanoparticles due to the random distribution of anisotropy axes which inhibits any long range FM ordering. The effect of the energy barrier distribution on the magnetic entropy change and its impact on the universal behavior based on rescaled entropy change curves for core/shell and hollow nanostructures is discussed. Our study emphasizes that the magnetic entropy change is an excellent parameter to study temperature and field dependent magnetic freezing in such complex nanostructures.

17.
Nanoscale ; 5(17): 7942-52, 2013 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-23857290

RESUMEN

We report a novel synthesis approach for the growth of core/shell FeO/Fe3O4 nanoparticles with controlled shape and size. FeO particles were partially oxidized to form core/shell FeO/Fe3O4 structures, as evidenced from transmission electron microscopy, X-ray diffraction, and magnetometry analysis. We find that the molar ratios and concentrations of surfactants are the key parameters in controlling the particle size. The particles can grow in either isotropic or anisotropic shapes, depending upon a chemical reaction scheme that is controlled kinetically or thermodynamically. The competitive growth rates of {111} and {100} facets can be used to tune the final shape of nanoparticles to spherical, cubic, octahedral, octopod, and cuboctahedral geometries. FeO particles can also be oxidized chemically or thermally to form Fe3O4 nanoparticles. By following the same synthesis technique, it is possible to synthesize rods and triangles of Fe3O4 by introducing twinnings and defects into the crystal structure of the seed. The thermally activated first-order Verwey transition at ~120 K has been observed in all the synthesized FeO/Fe3O4 nanoparticles, indicating its independence from the particle shape. These core/shell nanoparticles exhibit a strong shift in field-cooled hysteresis loops accompanied by an increase in coercivity (the so-called exchange bias effect), but the low field-switching behavior appears to vary with the particle shape.

18.
Nanotechnology ; 22(26): 265605, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21576787

RESUMEN

In this work, we report a detailed study of the formation of hollow nanostructures in iron oxides. Core/shell Fe/Fe-oxide nanoparticles were synthesized by thermal decomposition of Fe(CO)(5) at high temperature. It was found that 8 nm is the critical size above which the particles have a core/shell morphology, whereas below this size the particles exhibit a hollow morphology. Annealing the core/shell particles under air also leads to the formation of hollow spheres with a significant increase in the average particle size. In the case of the thermally activated Kirkendall process, the particles do not fully transform into hollow structures but many irregular shaped voids exist inside each particle. The 8 nm hollow particles are superparamagnetic at room temperature with a blocking temperature of 70 K whereas the core/shell particles are ferromagnetic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA