RESUMEN
Current antiretroviral therapy (ART) regimens efficiently limit HIV replication, thereby improving the life expectancy of people living with HIV; however, they also cause metabolic side effects. The ongoing obesity epidemic has resulted in more people with metabolic comorbidities at the time of HIV infection, yet the effect of preexisting metabolic dysregulation on infection sequelae and response to ART is unclear. Here, to investigate the impact of preexisting obesity and insulin resistance on acute infection and subsequent long-term ART, we infected a cohort of lean and obese adult male macaques with SIV and administered ART. The responses of lean and obese macaques to SIV and ART were similar with respect to plasma and cell-associated viral loads, ART drug levels in plasma and tissues, SIV-specific immune responses, adipose tissue and islet morphology, and colon inflammation, with baseline differences between lean and obese groups largely maintained. Both groups exhibited a striking depletion of CD4+ T cells from adipose tissue that did not recover with ART. However, differential responses to SIV and ART were observed for body weight, omental adipocyte size, and the adiponectin/leptin ratio, a marker of cardiometabolic risk. Thus, obesity and insulin resistance had limited effects on multiple responses to acute SIV infection and ART, while several factors that underlie long-term metabolic comorbidities were influenced by prior obesity and insulin resistance. These studies provide the foundation for future investigations into the efficacy of adjunct therapies such as metformin and glucagon-like peptide-1 receptor agonists in the prevention of metabolic comorbidities in people living with HIV.
Asunto(s)
Resistencia a la Insulina , Obesidad , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Carga Viral , Animales , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/metabolismo , Masculino , Obesidad/metabolismo , Obesidad/complicaciones , Antirretrovirales/uso terapéutico , Tejido Adiposo/metabolismo , Macaca mulatta , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismoRESUMEN
Introduction: Using a non-human primate (NHP) model of maternal Western-style diet (mWSD) feeding during pregnancy and lactation, we previously reported altered offspring beta:alpha cell ratio in vivo and insulin hyper-secretion ex vivo. Mitochondria are known to maintain beta-cell function by producing ATP for insulin secretion. In response to nutrient stress, the mitochondrial network within beta cells undergoes morphological changes to maintain respiration and metabolic adaptability. Given that mitochondrial dynamics have also been associated with cellular fate transitions, we assessed whether mWSD exposure was associated with changes in markers of beta-cell maturity and/or mitochondrial morphology that might explain the offspring islet phenotype. Methods: We evaluated the expression of beta-cell identity/maturity markers (NKX6.1, MAFB, UCN3) via florescence microscopy in islets of Japanese macaque pre-adolescent (1 year old) and peri-adolescent (3-year-old) offspring born to dams fed either a control diet or WSD during pregnancy and lactation and weaned onto WSD. Mitochondrial morphology in NHP offspring beta cells was analyzed in 2D by transmission electron microscopy and in 3D using super resolution microscopy to deconvolve the beta-cell mitochondrial network. Results: There was no difference in the percent of beta cells expressing key maturity markers in NHP offspring from WSD-fed dams at 1 or 3 years of age; however, beta cells of WSD-exposed 3 year old offspring showed increased levels of NKX6.1 per beta cell at 3 years of age. Regardless of maternal diet, the beta-cell mitochondrial network was found to be primarily short and fragmented at both ages in NHP; overall mitochondrial volume increased with age. In utero and lactational exposure to maternal WSD consumption may increase mitochondrial fragmentation. Discussion: Despite mWSD consumption having clear developmental effects on offspring beta:alpha cell ratio and insulin secretory response to glucose, this does not appear to be mediated by changes to beta-cell maturity or the beta-cell mitochondrial network. In general, the more fragmented mitochondrial network in NHP beta cells suggests greater ability for metabolic flexibility.
Asunto(s)
Dieta Occidental , Células Secretoras de Insulina , Fenómenos Fisiologicos Nutricionales Maternos , Mitocondrias , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestructura , Embarazo , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Dieta Occidental/efectos adversos , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Masculino , LactanciaRESUMEN
Early-life exposure to maternal obesity or a maternal calorically dense Western-style diet (WSD) is strongly associated with a greater risk of metabolic diseases in offspring, most notably insulin resistance and metabolic dysfunction-associated steatotic liver disease (MASLD). Prior studies in our well-characterized Japanese macaque model demonstrated that offspring of dams fed a WSD, even when weaned onto a control (CTR) diet, had reductions in skeletal muscle mitochondrial metabolism and increased skeletal muscle insulin resistance compared to offspring of dams on CTR diet. In the current study, we employed a nested design to test for differences in gene expression in skeletal muscle from lean 3-year-old adolescent offspring from dams fed a maternal WSD in both the presence and absence of maternal obesity or lean dams fed a CTR diet. We included offspring weaned to both a WSD or CTR diet to further account for differences in response to post-weaning diet and interaction effects between diets. Overall, we found that a maternal WSD fed to dams during pregnancy and lactation was the principal driver of differential gene expression (DEG) in offspring muscle at this time point. We identified key gene pathways important in insulin signaling including PI3K-Akt and MAP-kinase, regulation of muscle regeneration, and transcription-translation feedback loops, in both male and female offspring. Muscle DEG showed no measurable difference between offspring of obese dams on WSD compared to those of lean dams fed WSD. A post-weaning WSD effected offspring transcription only in individuals from the maternal CTR diet group but not in maternal WSD group. Collectively, we identify that maternal diet composition has a significant and lasting impact on offspring muscle transcriptome and influences later transcriptional response to WSD in muscle, which may underlie the increased metabolic disease risk in offspring.
RESUMEN
BACKGROUND: In recent years, pragmatic metformin use in pregnancy has stretched to include prediabetes mellitus, type 2 diabetes mellitus, gestational diabetes mellitus, and (most recently) preeclampsia. However, with its expanded use, concerns of unintended harm have been raised. OBJECTIVE: This study developed an experimental primate model and applied ultrahigh performance liquid chromatography coupled to triple-quadrupole mass spectrometry for direct quantitation of maternal and fetal tissue metformin levels with detailed fetal biometry and histopathology. STUDY DESIGN: Within 30 days of confirmed conception (defined as early pregnancy), 13 time-bred (timed-mated breeding) Rhesus dams with pregnancies designated for fetal necropsy were initiated on twice-daily human dose-equivalent 10 mg/kg metformin or vehicle control. Pregnant dams were maintained as pairs and fed either a control chow or 36% fat Western-style diet. Metformin or placebo vehicle control was delivered in various treats while the animals were separated via a slide. A cesarean delivery was performed at gestational day 145, and amniotic fluid and blood were collected, and the fetus and placenta were delivered. The fetus was immediately necropsied by trained primate center personnel. All fetal organs were dissected, measured, sectioned, and processed per clinical standards. Fluid and tissue metformin levels were assayed using validated ultrahigh performance liquid chromatography coupled to triple-quadrupole mass spectrometry in selected reaction monitoring against standard curves. RESULTS: Among 13 pregnancies at gestational day 145 with fetal necropsy, 1 dam and its fetal tissues had detectable metformin levels despite being allocated to the vehicle control group (>1 µmol metformin/kg maternal weight or fetal or placental tissue), whereas a second fetus allocated to the vehicle control group had severe fetal growth restriction (birthweight of 248.32 g [<1%]) and was suspected of having a fetal congenital condition. After excluding these 2 fetal pregnancies from further analyses, 11 fetuses from dams initiated on either vehicle control (n=4: 3 female and 1 male fetuses) or 10 mg/kg metformin (n=7: 5 female and 2 male fetuses) were available for analyses. Among dams initiated on metformin at gestational day 30 (regardless of maternal diet), significant bioaccumulation within the fetal kidney (0.78-6.06 µmol/kg; mean of 2.48 µmol/kg), liver (0.16-0.73 µmol/kg; mean of 0.38 µmol/kg), fetal gut (0.28-1.22 µmol/kg; mean of 0.70 µmol/kg), amniotic fluid (0.43-3.33 µmol/L; mean of 1.88 µmol/L), placenta (0.16-1.00 µmol/kg; mean of 0.50 µmol/kg), fetal serum (0.00-0.66 µmol/L; mean of 0.23 µmol/L), and fetal urine (4.10-174.10 µmol/L; mean of 38.5 µmol/L) was observed, with fetal levels near biomolar equivalent to maternal levels (maternal serum: 0.18-0.86 µmol/L [mean of 0.46 µmol/L]; maternal urine: 42.60-254.00 µmol/L [mean of 149.30 µmol/L]). Western-style diet feeding neither accelerated nor reduced metformin bioaccumulations in maternal or fetal serum, urine, amniotic fluid, placenta, or fetal tissues. In these 11 animals, fetal bioaccumulation of metformin was associated with less fetal skeletal muscle (57% lower cross-sectional area of gastrocnemius) and decreased liver, heart, and retroperitoneal fat masses (P<.05), collectively driving lower delivery weight (P<.0001) without changing the crown-rump length. Sagittal sections of fetal kidneys demonstrated delayed maturation, with disorganized glomerular generations and increased cortical thickness. This renal dysmorphology was not accompanied by structural or functional changes indicative of renal insufficiency. CONCLUSION: Our study demonstrates fetal bioaccumulation of metformin with associated fetal growth restriction and renal dysmorphology after maternal initiation of the drug within 30 days of conception in primates. Given these results and the prevalence of metformin use during pregnancy, additional investigation of any potential immediate and enduring effects of prenatal metformin use is warranted.
Asunto(s)
Retardo del Crecimiento Fetal , Hipoglucemiantes , Macaca mulatta , Metformina , Metformina/farmacocinética , Animales , Femenino , Embarazo , Retardo del Crecimiento Fetal/metabolismo , Hipoglucemiantes/farmacocinética , Riñón/metabolismo , Feto/metabolismo , Placenta/metabolismo , Líquido Amniótico/metabolismo , Modelos AnimalesRESUMEN
Allogeneic transplantation of pancreatic islets for patients with difficult-to-control diabetes mellitus is severely hampered by the requirement for continuous immunosuppression and its associated morbidity. We report that allogeneic transplantation of genetically engineered (B2M-/-, CIITA-/-, CD47+), primary, hypoimmune, pseudo-islets (p-islets) results in their engraftment into a fully immunocompetent, diabetic non-human primate wherein they provide stable endocrine function and enable insulin independence without inducing any detectable immune response in the absence of immunosuppression. Hypoimmune primary p-islets may provide a curative cell therapy for type 1 diabetes mellitus.
Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Humanos , Insulina/metabolismo , Trasplante de Islotes Pancreáticos/métodos , Islotes Pancreáticos/metabolismo , Primates , Diabetes Mellitus Tipo 1/terapia , Trasplante HomólogoRESUMEN
Background: Hyperlipidemia is associated with chronic inflammation and thromboinflammation. This is an underlying cause of several cardiovascular diseases, including atherosclerosis. In diseased blood vessels, rampant thrombin generation results in the initiation of the coagulation cascade, activation of platelets, and endothelial cell dysfunction. Coagulation factor (F) XI represents a promising therapeutic target to reduce thromboinflammation, as it is uniquely positioned at an intersection between inflammation and thrombin generation. Objectives: This study aimed to investigate the role of FXI in promoting platelet and endothelial cell activation in a model of hyperlipidemia. Methods: Nonhuman primates (NHPs) were fed a standard chow diet (lean, n = 6) or a high-fat diet (obese, n = 8) to establish a model of hyperlipidemia. Obese NHPs were intravenously administered a FXI blocking antibody (2 mg/kg) and studied at baseline and at 1, 7, 14, 21, and 28 days after drug administration. Platelet activation and inflammatory markers were measured using fluorescence-activated cell sorting or enzyme-linked immunosorbent assay. Molecular imaging was used to quantify vascular cell adhesion molecule 1 (VCAM-1) expression at the carotid bifurcation. Results: Obese NHPs demonstrated increased sensitivity for platelet P-selectin expression and phosphatidylserine exposure in response to platelet GPVI or PAR agonists compared with lean NHPs. Obese NHPs exhibited elevated levels of C-reactive protein, cathepsin D, and myeloperoxidase compared with lean NHPs. Following pharmacological inhibition of FIX activation by FXIa, platelet priming for activation by GPVI or PAR agonists, C-reactive protein levels, and endothelial VCAM-1 levels were reduced in obese NHPs. Conclusion: FXI activation promotes the proinflammatory phenotype of hyperlipidemia by priming platelet activation and inciting endothelial cell dysfunction.
RESUMEN
Genetic engineering of allogeneic cell therapeutics that fully prevents rejection by a recipient's immune system would abolish the requirement for immunosuppressive drugs or encapsulation and support large-scale manufacturing of off-the-shelf cell products. Previously, we generated mouse and human hypoimmune pluripotent (HIP) stem cells by depleting HLA class I and II molecules and overexpressing CD47 (B2M-/-CIITA-/-CD47+). To determine whether this strategy is successful in non-human primates, we engineered rhesus macaque HIP cells and transplanted them intramuscularly into four allogeneic rhesus macaques. The HIP cells survived unrestricted for 16 weeks in fully immunocompetent allogeneic recipients and differentiated into several lineages, whereas allogeneic wild-type cells were vigorously rejected. We also differentiated human HIP cells into endocrinologically active pancreatic islet cells and showed that they survived in immunocompetent, allogeneic diabetic humanized mice for 4 weeks and ameliorated diabetes. HIP-edited primary rhesus macaque islets survived for 40 weeks in an allogeneic rhesus macaque recipient without immunosuppression, whereas unedited islets were quickly rejected.
Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Pluripotentes Inducidas , Trasplante de Islotes Pancreáticos , Ratones , Animales , Macaca mulatta , Antígeno CD47 , Rechazo de InjertoRESUMEN
Maternal consumption of a Western-style diet (mWD) during pregnancy alters fatty acid metabolism and reduces insulin sensitivity in fetal skeletal muscle. The long-term impact of these fetal adaptations and the pathways underlying disordered lipid metabolism are incompletely understood. Therefore, we tested whether a mWD chronically fed to lean, insulin-sensitive adult Japanese macaques throughout pregnancy and lactation would impact skeletal muscle oxidative capacity and lipid metabolism in adolescent offspring fed a postweaning (pw) Western-style diet (WD) or control diet (CD). Although body weight was not different, retroperitoneal fat mass and subscapular skinfold thickness were significantly higher in pwWD offspring consistent with elevated fasting insulin and glucose. Maximal complex I (CI)-dependent respiration in muscle was lower in mWD offspring in the presence of fatty acids, suggesting that mWD impacts muscle integration of lipid with nonlipid oxidation. Abundance of all five oxidative phosphorylation complexes and VDAC, but not ETF/ETFDH, were reduced with mWD, partially explaining the lower respiratory capacity with lipids. Muscle triglycerides increased with pwWD; however, the fold increase in lipid saturation, 1,2-diacylglycerides, and C18 ceramide compared between pwCD and pwWD was greatest in mWD offspring. Reductions in CI abundance and VDAC correlated with reduced markers of oxidative stress, suggesting that these reductions may be an early-life adaptation to mWD to mitigate excess reactive oxygen species. Altogether, mWD, independent of maternal obesity or insulin resistance, results in sustained metabolic reprogramming in offspring muscle despite a healthy diet intervention. ARTICLE HIGHLIGHTS: In lean, active adolescent offspring, a postweaning Western-style diet (pwWD) leads to shifts in body fat distribution that are associated with poorer insulin sensitivity. Fatty acid-linked oxidative metabolism was reduced in skeletal muscles from offspring exposed to maternal Western-style diet (mWD) even when weaned to a healthy control diet for years. Reduced oxidative phosphorylation complex I-V and VDAC1 abundance partially explain decreased skeletal muscle respiration in mWD offspring. Prior exposure to mWD results in greater fold increase with pwWD in saturated lipids and bioactive lipid molecules (i.e. ceramide and sphingomyelin) associated with insulin resistance.
Asunto(s)
Resistencia a la Insulina , Humanos , Animales , Embarazo , Femenino , Adolescente , Resistencia a la Insulina/fisiología , Macaca fuscata/metabolismo , Metabolismo de los Lípidos , Músculo Esquelético/metabolismo , Insulina/metabolismo , Dieta Occidental/efectos adversos , Ácidos Grasos/metabolismo , Ceramidas/metabolismo , Dieta Alta en GrasaRESUMEN
The adipose-derived hormone leptin acts via its receptor (LepRb) in the brain to control energy balance. A potentially unidentified population of GABAergic hypothalamic LepRb neurons plays key roles in the restraint of food intake and body weight by leptin. To identify markers for candidate populations of LepRb neurons in an unbiased manner, we performed single-nucleus RNA-Seq of enriched mouse hypothalamic LepRb cells, identifying several previously unrecognized populations of hypothalamic LepRb neurons. Many of these populations displayed strong conservation across species, including GABAergic Glp1r-expressing LepRb (LepRbGlp1r) neurons, which expressed more Lepr than other LepRb cell populations. Ablating Lepr from LepRbGlp1r cells provoked hyperphagic obesity without impairing energy expenditure. Similarly, improvements in energy balance caused by Lepr reactivation in GABA neurons of otherwise Lepr-null mice required Lepr expression in GABAergic Glp1r-expressing neurons. Furthermore, restoration of Glp1r expression in LepRbGlp1r neurons in otherwise Glp1r-null mice enabled food intake suppression by the GLP1R agonist, liraglutide. Thus, the conserved GABAergic LepRbGlp1r neuron population plays crucial roles in the suppression of food intake by leptin and GLP1R agonists.
Asunto(s)
Leptina , Obesidad , Ratones , Animales , Leptina/genética , Leptina/metabolismo , Obesidad/genética , Obesidad/prevención & control , Obesidad/metabolismo , Hipotálamo/metabolismo , Ratones Noqueados , Neuronas GABAérgicas/metabolismo , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Ingestión de Alimentos/genéticaRESUMEN
Metformin is used by women during pregnancy to manage diabetes and crosses the placenta, yet its effects on the fetus are unclear. We show that the liver is a site of metformin action in fetal sheep and macaques, given relatively abundant OCT1 transporter expression and hepatic uptake following metformin infusion into fetal sheep. To determine the effects of metformin action, we performed studies in primary hepatocytes from fetal sheep, fetal macaques, and juvenile macaques. Metformin increases AMP-activated protein kinase (AMPK) signaling, decreases mammalian target of rapamycin (mTOR) signaling, and decreases glucose production in fetal and juvenile hepatocytes. Metformin also decreases oxygen consumption in fetal hepatocytes. Unique to fetal hepatocytes, metformin activates stress pathways (e.g., increased PGC1A gene expression, NRF-2 protein abundance, and phosphorylation of eIF2α and CREB proteins) alongside perturbations in hepatokine expression (e.g., increased growth/differentiation factor 15 [GDF15] and fibroblast growth factor 21 [FGF21] expression and decreased insulin-like growth factor 2 [IGF2] expression). Similarly, in liver tissue from sheep fetuses infused with metformin in vivo, AMPK phosphorylation, NRF-2 protein, and PGC1A expression are increased. These results demonstrate disruption of signaling and metabolism, induction of stress, and alterations in hepatokine expression in association with metformin exposure in fetal hepatocytes. ARTICLE HIGHLIGHTS: The major metformin uptake transporter OCT1 is expressed in the fetal liver, and fetal hepatic uptake of metformin is observed in vivo. Metformin activates AMPK, reduces glucose production, and decreases oxygen consumption in fetal hepatocytes, demonstrating similar effects as in juvenile hepatocytes. Unique to fetal hepatocytes, metformin activates metabolic stress pathways and alters the expression of secreted growth factors and hepatokines. Disruption of signaling and metabolism with increased stress pathways and reduced anabolic pathways by metformin in the fetal liver may underlie reduced growth in fetuses exposed to metformin.
Asunto(s)
Metformina , Embarazo , Femenino , Animales , Ovinos , Metformina/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Hepatocitos/metabolismo , Glucosa/metabolismo , Feto/metabolismo , Mamíferos/metabolismoRESUMEN
Maternal overnutrition is associated with increased susceptibility to type 2 diabetes in the offspring. Rodent models have shown that maternal overnutrition influences islet function in offspring. To determine whether maternal Western-style diet (WSD) alters prejuvenile islet function in a model that approximates that of human offspring, we utilized a well-characterized Japanese macaque model. We compared islet function from offspring exposed to WSD throughout pregnancy and lactation and weaned to WSD (WSD/WSD) compared with islets from offspring exposed only to postweaning WSD (CD/WSD) at 1 yr of age. WSD/WSD offspring islets showed increased basal insulin secretion and an exaggerated increase in glucose-stimulated insulin secretion, as assessed by dynamic ex vivo perifusion assays, relative to CD/WSD-exposed offspring. We probed potential mechanisms underlying insulin hypersecretion using transmission electron microscopy to evaluate ß-cell ultrastructure, qRT-PCR to quantify candidate gene expression, and Seahorse assay to assess mitochondrial function. Insulin granule density, mitochondrial density, and mitochondrial DNA ratio were similar between groups. However, islets from WSD/WSD male and female offspring had increased expression of transcripts known to facilitate stimulus-secretion coupling and changes in the expression of cell stress genes. Seahorse assay revealed increased spare respiratory capacity in islets from WSD/WSD male offspring. Overall, these results show that maternal WSD feeding confers changes to genes governing insulin secretory coupling and results in insulin hypersecretion as early as the postweaning period. The results suggest a maternal diet leads to early adaptation and developmental programming in offspring islet genes that may underlie future ß-cell dysfunction.NEW & NOTEWORTHY Programed adaptations in islets in response to maternal WSD exposure may alter ß-cell response to metabolic stress in offspring. We show that islets from maternal WSD-exposed offspring hypersecrete insulin, possibly due to increased components of stimulus-secretion coupling. These findings suggest that islet hyperfunction is programed by maternal diet, and changes can be detected as early as the postweaning period in nonhuman primate offspring.
Asunto(s)
Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Embarazo , Animales , Masculino , Femenino , Humanos , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Occidental/efectos adversos , Primates/metabolismo , Expresión Génica , Islotes Pancreáticos/metabolismoRESUMEN
Maternal overnutrition increases inflammatory and metabolic disease risk in postnatal offspring. This constitutes a major public health concern due to increasing prevalence of these diseases, yet mechanisms remain unclear. Here, using nonhuman primate models, we show that maternal Western-style diet (mWSD) exposure is associated with persistent pro-inflammatory phenotypes at the transcriptional, metabolic, and functional levels in bone marrow-derived macrophages (BMDMs) from 3-year-old juvenile offspring and in hematopoietic stem and progenitor cells (HSPCs) from fetal and juvenile bone marrow and fetal liver. mWSD exposure is also associated with increased oleic acid in fetal and juvenile bone marrow and fetal liver. Assay for transposase-accessible chromatin with sequencing (ATAC-seq) profiling of HSPCs and BMDMs from mWSD-exposed juveniles supports a model in which HSPCs transmit pro-inflammatory memory to myeloid cells beginning in utero. These findings show that maternal diet alters long-term immune cell developmental programming in HSPCs with proposed consequences for chronic diseases featuring altered immune/inflammatory activation across the lifespan.
Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Humanos , Animales , Femenino , Dieta Occidental/efectos adversos , Primates , Inmunidad InnataRESUMEN
This study investigated retinal changes in a Western diet (WD)-induced nonhuman primate model of type 2 diabetes. Rhesus nonhuman primates, aged 15 to 17 years, were fed a high-fat diet (n = 7) for >5 years reflective of the traditional WD. Age-matched controls (n = 6) were fed a standard laboratory primate diet. Retinal fundus photography, optical coherence tomography, autofluorescence imaging, and fluorescein angiography were performed before euthanasia. To assess diabetic retinopathy (DR), eyes were examined using trypsin digests, lipofuscin autofluorescence, and multimarker immunofluorescence on cross-sections and whole mounts. Retinal imaging showed venous engorgement and tortuosity, aneurysms, macular exudates, dot and blot hemorrhages, and a marked increase in fundus autofluorescence. Post-mortem changes included the following: decreased CD31 blood vessel density (P < 0.05); increased acellular capillaries (P < 0.05); increased density of ionized calcium-binding adaptor molecule expressing amoeboid microglia/macrophage; loss of regular distribution in stratum and spacing typical of ramified microglia; and increased immunoreactivity of aquaporin 4 and glial fibrillary acidic protein (P < 0.05). However, rhodopsin immunoreactivity (P < 0.05) in rods and neuronal nuclei antibody-positive neuronal density of 50% (P < 0.05) were decreased. This is the first report of a primate model of DR solely induced by a WD that replicates key features of human DR.
Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Animales , Humanos , Retinopatía Diabética/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Dieta Occidental , Vasos Retinianos/metabolismo , Primates , Tomografía de Coherencia Óptica/métodosRESUMEN
Pediatric NAFLD has distinct and variable pathology, yet causation remains unclear. We have shown that maternal Western-style diet (mWSD) compared with maternal chow diet (CD) consumption in nonhuman primates produces hepatic injury and steatosis in fetal offspring. Here, we define the role of mWSD and postweaning Western-style diet (pwWSD) exposures on molecular mechanisms linked to NAFLD development in a cohort of 3-year-old juvenile nonhuman primates offspring exposed to maternal CD or mWSD followed by CD or Western-style diet after weaning. We used histologic, transcriptomic, and metabolomic analyses to identify hepatic pathways regulating NAFLD. Offspring exposed to mWSD showed increased hepatic periportal collagen deposition but unchanged hepatic triglyceride levels and body weight. mWSD was associated with a downregulation of gene expression pathways underlying HNF4α activity and protein, and downregulation of antioxidant signaling, mitochondrial biogenesis, and PPAR signaling pathways. In offspring exposed to both mWSD and pwWSD, liver RNA profiles showed upregulation of pathways promoting fibrosis and endoplasmic reticulum stress and increased BiP protein expression with pwWSD. pwWSD increased acylcarnitines and decreased anti-inflammatory fatty acids, which was more pronounced when coupled with mWSD exposure. Further, mWSD shifted liver metabolites towards decreased purine catabolism in favor of synthesis, suggesting a mitochondrial DNA repair response. Our findings demonstrate that 3-year-old offspring exposed to mWSD but weaned to a CD have periportal collagen deposition, with transcriptional and metabolic pathways underlying hepatic oxidative stress, compromised mitochondrial lipid sensing, and decreased antioxidant response. Exposure to pwWSD worsens these phenotypes, triggers endoplasmic reticulum stress, and increases fibrosis. Overall, mWSD exposure is associated with altered expression of candidate genes and metabolites related to NAFLD that persist in juvenile offspring preceding clinical presentation of NAFLD.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Enfermedad del Hígado Graso no Alcohólico/etiología , Dieta Occidental , Antioxidantes , Fibrosis , Fenotipo , PrimatesRESUMEN
Low-density lipoprotein (LDL) contributes to atherogenesis and cardiovascular disease through interactions with peripheral blood cells, especially platelets. However, mechanisms by which LDL affects platelet activation and atherothrombosis, and how to best therapeutically target and safely prevent such responses remain unclear. Here, we investigate how oxidized low-density lipoprotein (oxLDL) enhances glycoprotein VI (GPVI)-mediated platelet hemostatic and procoagulant responses, and how traditional and emerging antiplatelet therapies affect oxLDL-enhanced platelet procoagulant activity ex vivo. Human platelets were treated with oxLDL and the GPVI-specific agonist, crosslinked collagen-related peptide, and assayed for hemostatic and procoagulant responses in the presence of inhibitors of purinergic receptors (P2YR), cyclooxygenase (COX), and tyrosine kinases. Ex vivo, oxLDL enhanced GPVI-mediated platelet dense granule secretion, α-granule secretion, integrin activation, thromboxane generation and aggregation, as well as procoagulant phosphatidylserine exposure and fibrin generation. Studies of washed human platelets, as well as platelets from mouse and nonhuman primate models of hyperlipidemia, further determined that P2YR antagonists (eg, ticagrelor) and Bruton tyrosine kinase inhibitors (eg, ibrutinib) reduced oxLDL-mediated platelet responses and procoagulant activity, whereas COX inhibitors (eg, aspirin) had no significant effect. Together, our results demonstrate that oxLDL enhances GPVI-mediated platelet procoagulant activity in a manner that may be more effectively reduced by P2YR antagonists and tyrosine kinase inhibitors compared with COX inhibitors.
Asunto(s)
Hemostáticos , Inhibidores de Agregación Plaquetaria , Humanos , Ratones , Animales , Inhibidores de Agregación Plaquetaria/farmacología , Lipoproteínas LDL/farmacologíaRESUMEN
Introduction: Inflammatory activation of the vascular endothelium leads to overexpression of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), contributing to the pro-thrombotic state underpinning atherogenesis. While the role of TEC family kinases (TFKs) in mediating inflammatory cell and platelet activation is well defined, the role of TFKs in vascular endothelial activation remains unclear. We investigated the role of TFKs in endothelial cell activation in vitro and in a nonhuman primate model of diet-induced atherosclerosis in vivo. Methods and Results: In vitro, we found that ibrutinib blocked activation of the TFK member, BMX, by vascular endothelial growth factors (VEGF)-A in human aortic endothelial cells (HAECs). Blockade of BMX activation with ibrutinib or pharmacologically distinct BMX inhibitors eliminated the ability of VEGF-A to stimulate VCAM-1 expression in HAECs. We validated that treatment with ibrutinib inhibited TFK-mediated platelet activation and aggregation in both human and primate samples as measured using flow cytometry and light transmission aggregometry. We utilized contrast-enhanced ultrasound molecular imaging to measure platelet GPIbα and endothelial VCAM-1 expression in atherosclerosis-prone carotid arteries of obese nonhuman primates. We observed that the TFK inhibitor, ibrutinib, inhibited platelet deposition and endothelial cell activation in vivo. Conclusion: Herein we found that VEGF-A signals through BMX to induce VCAM-1 expression in endothelial cells, and that VCAM-1 expression is sensitive to ibrutinib in vitro and in atherosclerosis-prone carotid arteries in vivo. These findings suggest that TFKs may contribute to the pathogenesis of atherosclerosis and could represent a novel therapeutic target.
RESUMEN
The research community is committed to improving the well-being of nonhuman primates by providing opportunities to express species-specific behaviors such as foraging. In the wild, macaques spend a large part of their day foraging; this behavior is greatly limited in captivity. Bedding (wood shavings substrate) has been shown to promote foraging in rhesus macaques. However, the amount of bedding needed to affect these changes is unknown. Further, few studies have examined other benefits of bedding, including its potential to reduce noise levels, which can negatively impact welfare. We examined the use of bedding substrate in male Mauritius cynomolgus macaques (2-3-y-old) living in one of 2 social groups with either a full bale of bedding (that is, approximately 6 in of substrate) or a half bale (approximately 3 in) added to the pens for 10 d, followed by 4 d without bedding. We performed focal observations on 8 monkeys biweekly for 8 wk and used a dosimeter to measure sound in the room for 42 d. As expected, monkeys spent significantly more time foraging and less time self-grooming when bedding was present than when it was not. The amount of bedding did not make a difference. The presence of bedding did not affect social grooming or aggression, although it did help to dampen sound. Both peak and mean sound levels were lower with a full bale of bedding than with no bedding. Taken together, these results suggest that bedding is an effective enrichment strategy that can improve welfare of group-housed macaques.
Asunto(s)
Ropa de Cama y Ropa Blanca , Vivienda para Animales , Animales , Aseo Animal , Macaca fascicularis , Macaca mulatta , MasculinoRESUMEN
Maternal obesity programs the offspring to metabolic diseases later in life; however, the mechanisms of programming are yet unclear, and no strategies exist for addressing its detrimental transgenerational effects. Obesity has been linked to dipeptidyl peptidase IV (DPPIV), an adipokine, and treatment of obese individuals with DPPIV inhibitors has been reported to prevent weight gain and improve metabolism. We hypothesized that DPPIV plays a role in maternal obesity-mediated programming. We measured plasma DPPIV activity in human maternal and cord blood samples from normal-weight and obese mothers at term. We found that maternal obesity increases maternal and cord blood plasma DPPIV activity but only in male offspring. Using two non-human primate models of maternal obesity, we confirmed the activation of DPPIV in the offspring of obese mothers. We then created a mouse model of maternal high-fat diet (HFD)-induced obesity, and found an early-life increase in plasma DPPIV activity in male offspring. Activation of DPPIV preceded the progression of obesity, glucose intolerance and insulin resistance in male offspring of HFD-fed mothers. We then administered sitagliptin, DPPIV inhibitor, to regular diet (RD)- and HFD-fed mothers, starting a week prior to breeding and continuing throughout pregnancy and lactation. We found that sitagliptin treatment of HFD-fed mothers delayed the progression of obesity and metabolic diseases in male offspring and had no effects on females. Our findings reveal that maternal obesity dysregulates plasma DPPIV activity in males and provide evidence that maternal inhibition of DPPIV has potential for addressing the transgenerational effects of maternal obesity.
Asunto(s)
Enfermedades Metabólicas , Obesidad Materna , Ratones , Animales , Masculino , Femenino , Embarazo , Humanos , Dipeptidil Peptidasa 4 , Obesidad Materna/complicaciones , Obesidad/complicaciones , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Fosfato de Sitagliptina , Fenómenos Fisiologicos Nutricionales MaternosRESUMEN
Maternal obesity affects nearly one-third of pregnancies and is a major risk factor for nonalcoholic fatty liver disease (NAFLD) in adolescent offspring, yet the mechanisms behind NAFLD remain poorly understood. Here, we demonstrate that nonhuman primate fetuses exposed to maternal Western-style diet (WSD) displayed increased fibrillar collagen deposition in the liver periportal region, with increased ACTA2 and TIMP1 staining, indicating localized hepatic stellate cell (HSC) and myofibroblast activation. This collagen deposition pattern persisted in 1-year-old offspring, despite weaning to a control diet (CD). Maternal WSD exposure increased the frequency of DCs and reduced memory CD4+ T cells in fetal liver without affecting systemic or hepatic inflammatory cytokines. Switching obese dams from WSD to CD before conception or supplementation of the WSD with resveratrol decreased fetal hepatic collagen deposition and reduced markers of portal triad fibrosis, oxidative stress, and fetal hypoxemia. These results demonstrate that HSCs and myofibroblasts are sensitive to maternal WSD-associated oxidative stress in the fetal liver, which is accompanied by increased periportal collagen deposition, indicative of early fibrogenesis beginning in utero. Alleviating maternal WSD-driven oxidative stress in the fetal liver holds promise for halting steatosis and fibrosis and preventing developmental programming of NAFLD.
Asunto(s)
Dieta Occidental/efectos adversos , Cirrosis Hepática/fisiopatología , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Animales , Femenino , Exposición Materna , Embarazo , Primates , ÚteroRESUMEN
The prevalence of maternal obesity is increasing in the United States. Offspring born to women with obesity or poor glycemic control have greater odds of becoming obese and developing metabolic disease later in life. Our group has utilized a macaque model to study the metabolic effects of consumption of a calorically-dense, Western-style diet (WSD; 36.3% fat) during pregnancy. Here, our objective was to characterize the effects of WSD and obesity, alone and together, on maternal glucose tolerance and insulin levels in dams during each pregnancy. Recognizing the collinearity of maternal measures, we adjusted for confounding factors including maternal age and parity. Based on intravenous glucose tolerance tests, dams consuming a WSD showed lower glucose area under the curve during first study pregnancies despite increased body fat percentage and increased insulin area under the curve. However, with (1) prolonged WSD feeding, (2) multiple diet switches, and/or (3) increasing age and parity, WSD was associated with increasingly higher insulin levels during glucose tolerance testing, indicative of insulin resistance. Our results suggest that prolonged or recurrent calorically-dense WSD and/or increased parity, rather than obesity per se, drive excess insulin resistance and metabolic dysfunction. These observations in a highly relevant species are likely of clinical and public health importance given the comparative ease of maternal dietary modifications relative to the low likelihood of successfully reversing obesity in the course of any given pregnancy.