Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Environ Toxicol Chem ; 32(2): 406-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23147916

RESUMEN

Existing standard bioconcentration tests (e.g., the Organization for Economic Cooperation and Development [OECD] test guideline 305) require large numbers of test animals and resources. The minimized aqueous exposure test is a new approach based on the standard bioconcentration test but allows estimation of bioconcentration factor (BCF) by minimized sampling of the test fish. The authors collected BCF data (298 curves from 155 chemicals, using common carp as test species) from Japan's Chemical Substances Control Law database and resampled the data to simulate the calculation of BCF that would be obtained if studies had been designed to obtain kinetic BCF derived from minimized aqueous exposure tests (BCF(km)). The correlation was high (r(2) = 0.967) between BCF derived from standard bioconcentration tests (BCF(full)) and BCF(km). The average value of the BCF(full) to BCF(km) ratio (BCF(full):BCF(km)) was 1.04 and ranged from 0.54 to 1.93, the 5th and 95th percentiles being 0.74 and 1.45, respectively. The results based on the 5th and 95th percentiles of the BCF(full):BCF(km) ratio suggest that BCF(full) 2,000 corresponds to BCF(km) 1,400 to 2,700, whereas BCF(full) 5,000 corresponds to BCF(km) 3,400 to 6,800. The authors also emphasize that the standard bioconcentration test should be performed when the resulting BCF(km) is in the region of regulatory concern.


Asunto(s)
Monitoreo del Ambiente/normas , Contaminantes Químicos del Agua/metabolismo , Animales , Carpas/metabolismo , Simulación por Computador , Bases de Datos Factuales , Monitoreo del Ambiente/métodos , Japón , Cinética , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/normas , Contaminación Química del Agua/estadística & datos numéricos
2.
Arch Environ Contam Toxicol ; 63(2): 241-8, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22484798

RESUMEN

Existing regulatory criteria for bioaccumulation assessment of chemicals are mainly based on a bioconcentration factors (BCF) not a biomagnification factors (BMF). We performed dietary exposure tests for nine poorly water-soluble chemicals and developed a linear regression between the 5 % lipid normalized BCF (BCF(L)) and the lipid-corrected BMF (BMF(L)). The BMF(L) of substances with BCF(L) = 5,000 was 0.31 (95 % CI 0.11-0.87), whereas the BCF(L) of substances with BMF(L) = 1 was 13,000 (95 % CI 5,600-30,000). Five substances can be considered very bioaccumulative (vB) according to the BCF end point (BCF > 5,000), but only two substances were recognized to biomagnify according to the BMF end point (BMF ≥ 1). Although our results are highly suggestive of a relationship between BCF and BMF, additional BMF and trophic magnification factor data for chemicals are required to support this relationship, and new techniques (e.g., fugacity approach) may help in resolving the apparent contradiction in hazard categorization.


Asunto(s)
Carpas/metabolismo , Monitoreo del Ambiente/métodos , Contaminación de Alimentos , Contaminantes Químicos del Agua/farmacocinética , Animales , Cadena Alimentaria , Modelos Lineales , Solubilidad
3.
Arch Environ Contam Toxicol ; 62(4): 672-80, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22127646

RESUMEN

Carp (Cyprinus carpio L.) was exposed to perfluorinated compounds (PFCs)-perfluoroalkyl carboxylic acids (number of carbon atoms, C = 8, 11, 12, 14, 16, and 18) and perfluorooctane sulfonate (PFOS)-in bioconcentration tests to compare the bioconcentration factors (BCFs) and physicochemical properties of each specific compound. Despite having the same number of carbon atoms (C = 8), the BCFs of perfulorooctanoic acid (PFOA) and PFOS differed by more than two orders of magnitude (PFOA BCF = < 5.1 to 9.4; PFOS BCF = 720 to 1300). The highest BCFs were obtained from perfluorododecanoic acid (BCF = 10,000 to 16,000) and perfluorotetradecanoic acid (BCF = 16,000 to 17,000). The longest observed depuration half-lives were for perfluorohexadecanoic acid (48 to 54 days) and PFOS (45 to 52 days). The concentrations of PFCs were highest in the viscera, followed by the head, integument, and remaining parts of the test fish. PFCs concentrations in the integument, which was in direct contact with the test substances, were relatively greater than that of other lipophilic substance (hexachlorobenzene). It is likely that Clog P would be a better parameter than log K (ow) for the prediction of BCFs for PFCs. Threshold values for PFCs bioaccumulation potential (molecular weight = 700, maximum diameter = 2 nm) seemed to deviate from those generally reported because of the specific steric bulk effect of molecule size.


Asunto(s)
Ácidos Alcanesulfónicos/química , Ácidos Alcanesulfónicos/farmacocinética , Carpas/metabolismo , Fluorocarburos/química , Fluorocarburos/farmacocinética , Contaminantes Químicos del Agua/química , Animales , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacocinética , Cabeza , Ácidos Láuricos/química , Ácidos Láuricos/farmacocinética , Relación Estructura-Actividad , Distribución Tisular , Contaminantes Químicos del Agua/farmacocinética
4.
Bull Environ Contam Toxicol ; 87(3): 287-91, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21713387

RESUMEN

Carp (Cyprinus carpio L.) were exposed to nitrofen (NIP) by different routes (via water or food) to compare bioaccumulation parameters and tissue distribution. The bioconcentration factor of NIP was 5,100, and the lipid-corrected biomagnification factor was 0.137. Growth-corrected elimination half lives were 2.1-3.0 days via aqueous exposure and 2.7-2.9 days via dietary exposure. From either uptake route, the tissue distribution of NIP was highest in the head, followed by muscle, viscera, dermis, digestive tract and hepatopancreas, which was highly correlated with the tissue lipid content. We conclude that the uptake route has no influence on tissue distribution of NIP and that the accumulation potential in tissues depends on the lipid content.


Asunto(s)
Carpas/metabolismo , Dieta/veterinaria , Monitoreo del Ambiente , Herbicidas/toxicidad , Éteres Fenílicos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Carpas/crecimiento & desarrollo , Dermis/efectos de los fármacos , Dermis/metabolismo , Tracto Gastrointestinal/efectos de los fármacos , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/metabolismo , Herbicidas/farmacocinética , Japón , Lípidos/química , Músculos/efectos de los fármacos , Músculos/metabolismo , Éteres Fenílicos/farmacocinética , Factores de Tiempo , Distribución Tisular/efectos de los fármacos , Vísceras/efectos de los fármacos , Vísceras/metabolismo , Contaminantes Químicos del Agua/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA