Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Micromachines (Basel) ; 15(9)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39337770

RESUMEN

The use of flexible pressure sensors has become increasingly widespread in a variety of applications, including wearable electronics and electronic skin. These sensors need to exhibit high sensitivity, wide detection limits, a fast response time, a linear response, and mechanical stability. In this study, we demonstrate a resistive pressure sensor based on randomly arranged micropyramid polydimethylsiloxane (PDMS) with a conductive poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT:PSS) thin film with a sensitivity of 391 kPa-1, a response time of 52.91 ms, a recovery time of 4.38 ms, and a limit of detection (LOD) of 0.35 kPa. Electrodes are then connected to a pair of the proposed resistive pressure sensors that face each other to fabricate a pressure sensing device. We examine various characteristics of the fabricated device, including the changes observed when applying loads ranging from 0 to 2.58 kPa. The proposed sensor exhibits high sensitivity and a rapid response time.

2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731887

RESUMEN

This study explores olive flounder by-product Prozyme2000P (OFBP) hydrolysate as a potential treatment for age-related kidney decline. Ferroptosis, a form of cell death linked to iron overload and oxidative stress, is increasingly implicated in aging kidneys. We investigated whether OFBP could inhibit ferroptosis and improve kidney health. Using TCMK-1 cells, we found that OFBP treatment protected cells from ferroptosis induced by sodium iodate (SI). OFBP also preserved the mitochondria health and influenced molecules involved in ferroptosis regulation. In aging mice, oral administration of OFBP significantly improved kidney health markers. Microscopic examination revealed reduced thickening and scarring in the kidney's filtering units, a hallmark of aging. These findings suggest that OFBP hydrolysate may be a promising therapeutic candidate for age-related kidney decline. By inhibiting ferroptosis, OFBP treatment appears to improve both cellular and structural markers of kidney health. Further research is needed to understand how OFBP works fully and test its effectiveness in more complex models.


Asunto(s)
Ferroptosis , Riñón , Animales , Ferroptosis/efectos de los fármacos , Ratones , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Envejecimiento/efectos de los fármacos , Lenguado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Masculino , Línea Celular , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Enfermedades Renales/patología
3.
iScience ; 27(2): 109029, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38327795

RESUMEN

Concern for the environment is one of the main factors that are increasing the demand for compact and energy-efficient electronic devices. Recent research has made advances in reducing the power consumption of field-effect transistors, including the use of high-dielectric insulators, low-voltage operation, and selective power-conservation strategies. This paper introduces a revolutionary air-friction-driven rotating gate transistor that operates without the need for a conventional gate voltage. This new device offers the advantages of wear resistance, a slim and flexible design (achieved through low-temperature solution processing), and a simplified three-layer structure that streamlines manufacturing and reduces potential carbon emissions. This device's wear resistance and ease of fabrication render the device a promising technology with applications in various fields, including electronics, vehicles, aviation, and wearable devices. This study provides evidence of the device's feasibility for use in real-world vehicular scenarios, underscoring its potential for future innovation and widespread adoption.

4.
Micromachines (Basel) ; 14(3)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36985027

RESUMEN

Organic phototransistors exhibit great promise for use in a wide range of technological applications due to their flexibility, low cost, and low-temperature processability. However, their low transparency due to visible light absorption has hindered their adoption in next-generation transparent electronics. For this reason, the present study sought to develop a highly sensitive organic phototransistor with greater transparency and significantly higher light sensitivity in the visible and UVA regions without deterioration in its electrical properties. An organic blended thin-film transistor (TFT) fabricated from the blend of an organic semiconductor and an insulating polymer demonstrated improved electrical properties in the dark and a higher current under light irradiation even though its transmittance was higher. The device exhibited a transmittance of 87.28% and a photosensitivity of 7049.96 in the visible light region that were 4.37% and 980 times higher than those of the single-semiconductor-based device. The carrier mobility of the device blended with the insulating polymer was improved and greatly amplified under light irradiation. It is believed that the insulating polymer facilitated the crystallization of the organic semiconductor, thus promoting the flow of photogenerated excitons and improving the photocurrent. Overall, the proposed TFT offers excellent low-temperature processability and has the potential to be employed in a range of transparent electronic applications.

5.
Antioxidants (Basel) ; 11(11)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36358584

RESUMEN

Microgravity stimulation is associated with retinal pigment epithelial (RPE) cells that transition to mesenchymal cells (EMT), and these pathological changes cause visual impairment. Vascular endothelial growth factor (VEGF) is produced from the RPE and contributes to photoreceptor survival. However, changes in VEGF production and function under microgravity stimulation are unknown. In this study, we verified that microgravity stimulation changed the morphological characteristics of human RPE cells (ARPE19 cells) and the expression of actin cytoskeleton regulators, which are related to excessive VEGF expression. Interestingly, microgravity stimulation increased not only the production of VEGF but also the expression of EMT markers. Previously, we studied the potential of ishophloroglucin A (IPA), a phlorotannin, as an antioxidant. In silico results confirmed that IPA could structurally bind to VEGF receptor 2 (VEGFR2) among VEGFRs and inhibit the VEGF pathway. IPA significantly decreased VEGF production and EMT marker expression in microgravity-stimulated cells. It also significantly reduced excessive cell migration in VEGF-induced EMT. Overall, our findings suggested that IPA treatment decreased VEGF production and EMT marker expression in microgravity-stimulated or VEGF-treated ARPE19 cells, and this decrease in EMT could restore excessive cell migration by inhibiting the VEGF/VEGFR2 pathway. Therefore, it is a potential therapeutic candidate for angiogenesis-related eye diseases.

6.
Sensors (Basel) ; 22(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35590998

RESUMEN

Among various energy harvesting technologies, triboelectricity is an epoch-making discovery that can convert energy loss caused by the mechanical vibration or friction of parts into energy gain. As human convenience has emerged as an important future value, wireless devices have attracted widespread attention; thus, it is essential to extend the duration and lifespan of batteries through energy harvesting or the application of self-powered equipment. Here, we report a transistor, in which the gate rotates and rubs against the dielectric and utilizes the triboelectricity generated rather than the switching voltage of the transistor. The device is a triboelectric transistor with a simple structure and is manufactured using a simple process. Compared to that at the stationary state, the output current of the triboelectric transistor increased by 207.66 times at the maximum rotation velocity. The approach reported in this paper could be an innovative method to enable a transistor to harness its own power while converting energy loss in any rotating object into harvested energy.


Asunto(s)
Suministros de Energía Eléctrica , Nanotecnología , Humanos , Nanotecnología/métodos , Rotación
7.
Int J Mol Sci ; 23(7)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35409306

RESUMEN

Rare diseases are those which affect a small number of people compared to the general population. However, many patients with a rare disease remain undiagnosed, and a large majority of rare diseases still have no form of viable treatment. Approximately 40% of rare diseases include neurologic and neurodevelopmental disorders. In order to understand the characteristics of rare neurological disorders and identify causative genes, various model organisms have been utilized extensively. In this review, the characteristics of model organisms, such as roundworms, fruit flies, and zebrafish, are examined, with an emphasis on zebrafish disease modeling in rare neurological disorders.


Asunto(s)
Enfermedades del Sistema Nervioso , Trastornos del Neurodesarrollo , Animales , Modelos Animales de Enfermedad , Humanos , Enfermedades del Sistema Nervioso/genética , Enfermedades Raras , Pez Cebra/genética
8.
Sci Rep ; 11(1): 22399, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789757

RESUMEN

Engineering of efficient plasmonic hotspots has been receiving great attention to enhance the sensitivity of surface-enhanced Raman scattering (SERS). In the present study, we propose a highly sensitive SERS platform based on Au nanoparticles (AuNPs) on Au island film (AuIF) with a spacer layer of 1,4-benzenedimethanethiol (BDMT). The three-dimensional (3D) hotspot matrix has been rationally designed based on the idea of employing 3D hotspots with a vertical nanogap between AuIF and AuNPs after generating large area two-dimensional hotspots of AuIF. AuNPs@BDMT@AuIF are fabricated by functionalizing BDMT on AuIF and then immobilizing AuNPs. The SERS performance is investigated with Rhodamine 6G as a probe molecule and the determined enhancement factor is 1.3 × 105. The AuNPs@BDMT@AuIF are then employed to detect thiram, which is used as a fungicide, with a detection limit of 13 nM. Our proposed platform thus shows significant potential for use in highly sensitive SERS sensors.

9.
Sensors (Basel) ; 21(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34450823

RESUMEN

In this study, we propose a new intelligent system to automatically quantify the morphological parameters of the lamina cribrosa (LC) of the optical coherence tomography (OCT), including depth, curve depth, and curve index from OCT images. The proposed system consisted of a two-stage deep learning (DL) model, which was composed of the detection and the segmentation models as well as a quantification process with a post-processing scheme. The models were used to solve the class imbalance problem and obtain Bruch's membrane opening (BMO) as well as anterior LC information. The detection model was implemented by using YOLOv3 to acquire the BMO and LC position information. The Attention U-Net segmentation model is used to compute accurate locations of the BMO and LC curve information. In addition, post-processing is applied using polynomial regression to attain the anterior LC curve boundary information. Finally, the numerical values of morphological parameters are quantified from BMO and LC curve information using an image processing algorithm. The average precision values in the detection performances of BMO and LC information were 99.92% and 99.18%, respectively, which is very accurate. A highly correlated performance of R2 = 0.96 between the predicted and ground-truth values was obtained, which was very close to 1 and satisfied the quantification results. The proposed system was performed accurately by fully automatic quantification of BMO and LC morphological parameters using a DL model.


Asunto(s)
Disco Óptico , Tomografía de Coherencia Óptica , Algoritmos , Lámina Basal de la Coroides , Procesamiento de Imagen Asistido por Computador
10.
Sensors (Basel) ; 21(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066590

RESUMEN

The quantification of blood flow velocity in the human conjunctiva is clinically essential for assessing microvascular hemodynamics. Since the conjunctival microvessel is imaged in several seconds, eye motion during image acquisition causes motion artifacts limiting the accuracy of image segmentation performance and measurement of the blood flow velocity. In this paper, we introduce a novel customized optical imaging system for human conjunctiva with deep learning-based segmentation and motion correction. The image segmentation process is performed by the Attention-UNet structure to achieve high-performance segmentation results in conjunctiva images with motion blur. Motion correction processes with two steps-registration and template matching-are used to correct for large displacements and fine movements. The image displacement values decrease to 4-7 µm during registration (first step) and less than 1 µm during template matching (second step). With the corrected images, the blood flow velocity is calculated for selected vessels considering temporal signal variances and vessel lengths. These methods for resolving motion artifacts contribute insights into studies quantifying the hemodynamics of the conjunctiva, as well as other tissues.


Asunto(s)
Conjuntiva , Aprendizaje Profundo , Algoritmos , Artefactos , Velocidad del Flujo Sanguíneo , Conjuntiva/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Microvasos/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA