Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
Environ Res ; : 119437, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38897436

RESUMEN

Vertical migration behaviour, which is integral to marine energy circulation, is a prevalent trait among marine organisms. However, the behaviour of phytoplankton, particularly beyond diel vertical migration (DVM), remain underexplored compared to groups like zooplankton. Through the lens of the harmful alga Heterosigma akashiwo, which exhibits unique vertical migrations and fluctuating red tide patterns, this study aimed to explore the ecological intricacies and diverse benefits of phytoplankton vertical migration behaviours. During the bloom period of H. akashiwo, we unexpectedly observed a dense concentration of cells at bottom layer during daytime. This phase coincided with the emergence of cells related to this species' sexual reproduction. Laboratory experiments further showed an elevated frequency of sexual reproduction in the cell populations that migrated to deeper depths compared to those at the surface. This finding implies a connection between dense bottom accumulation (BA) and the life cycle transitions of the species. This BA phase persisted for two days, after which the populations returned to their standard DVM behaviour, providing insight into the unique fluctuating red tide patterns of H. akashiwo. Our study suggests that phytoplankton vertical migrations are not strictly dictated by DVM, revealing diverse vertical migration behaviours that may contribute to the complexity of harmful algal bloom patterns.

2.
Food Chem Toxicol ; 188: 114698, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679282

RESUMEN

Phototoxicity is an acute toxic reaction induced by topical skin exposure to photoreactive chemicals followed by exposure to environmental light and thus chemicals that absorb UV are recommended to be evaluated for phototoxic potential. There are currently three internationally harmonized alternative test methods for phototoxicity. One of them is the in vitro Phototoxicity: RhE Phototoxicity test method (OECD TG498). Korean center for the Validation of Alternative Methods (KoCVAM) developed an in vitro phototoxicity test method using a KeraSkin™ reconstructed human epidermis model (KeraSkin™ Phototoxicity Assay) as a 'me-too' test method of OECD TG498. For the development and optimization of KeraSkin™ Phototoxicity Assay, the following test chemicals were used: 6 proficiency chemicals in OECD TG498 (3 phototoxic and 3 non-phototoxic), 6 reference chemicals in OECD Performance Standard No. 356 (excluding the proficiency test chemicals, 3 phototoxic and 3 non-phototoxic) and 13 additional chemicals (7 phototoxic and 6 non-phototoxic). Based on the test results generated from the test chemicals above, the overall predictive capacity of KeraSkin™ Phototoxicity Assay was calculated. In particular, the assay exhibited 100 % accuracy, 100 % sensitivity, and 100 % specificity. Therefore, it fulfills the requirements to be included as a 'me-too' test method in OECD TG498.


Asunto(s)
Dermatitis Fototóxica , Epidermis , Humanos , Epidermis/efectos de los fármacos , Epidermis/efectos de la radiación , Alternativas a las Pruebas en Animales/métodos , Rayos Ultravioleta , Pruebas de Toxicidad/métodos , Modelos Biológicos
3.
Harmful Algae ; 129: 102521, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951620

RESUMEN

Heterosigma akashiwo (Raphidophyceae) is widely recognized as a species responsible for harmful algal blooms worldwide. The species has long been speculated to possess a more complex life history, attributed to the diverse morphological variations observed during cell cultivation. However, the understanding of its life history has remained insufficient due to limitations in observing transitions between life cycle stages in vitro and challenges associated with in situ investigations. In this study, a combination of in vitro (laboratory-based) and in situ (field-based) observations was employed to define the life cycle stages of H. akashiwo and elucidate the pathways of transition between these stages. Notably, novel homothallic sexual reproduction processes involving the fusion of hologametes and the subsequent formation of zygotes were observed for the first time in vitro. These zygotes were found to either divide into vegetative cells (Pathway I) or undergo enlargement, resulting in the formation of multiple cells with multiple nuclei (Pathway II). Furthermore, this study provides the first documentation of large cells and cell clusters in situ, including intermediate stages referred to as large cells with ongoing cytoplasmic division that serve as a bridge between these two cell types. The observed zygotes in vitro exhibited a large size (21.9-51.8 µm) and multinucleated characteristics, similar to the large cells (38.2-45.8 µm) and cell clusters observed in situ. This finding suggests that the large cells observed in situ were zygotes undergoing cell division to form cell clusters (Pathway III). Moreover, based on the striking similarities in cell morphology and nuclear size between the cells comprising the cell cluster (2.7-4.4 µm) and the cyst clusters of this species, along with the synchronized germination characteristics of cyst clusters, it is proposed that the cell cluster serves as a precursor to cysts. By integrating the in situ and in vitro observations, this study provides a comprehensive understanding of the previously poorly understood life history of H. akashiwo.


Asunto(s)
Quistes , Dinoflagelados , Estramenopilos , Animales , Floraciones de Algas Nocivas , División Celular , Estadios del Ciclo de Vida
4.
J Biol Chem ; 299(9): 105175, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37599001

RESUMEN

N6-adenosine methylation (m6A) is the most abundant mRNA modification that controls gene expression through diverse mechanisms. Accordingly, m6A-dependent regulation of oncogenes and tumor suppressors contributes to tumor development. However, the role of m6A-mediated gene regulation upon drug treatment or resistance is poorly understood. Here, we report that m6A modification of mitogen-activated protein kinase 13 (MAPK13) mRNA determines the sensitivity of cancer cells to the mechanistic target of rapamycin complex 1 (mTORC1)-targeting agent rapamycin. mTORC1 induces m6A modification of MAPK13 mRNA at its 3' untranslated region through the methyltransferase-like 3 (METTL3)-METTL14-Wilms' tumor 1-associating protein(WTAP) methyltransferase complex, facilitating its mRNA degradation via an m6A reader protein YTH domain family protein 2. Rapamycin blunts this process and stabilizes MAPK13. On the other hand, genetic or pharmacological inhibition of MAPK13 enhances rapamycin's anticancer effects, which suggests that MAPK13 confers a progrowth signal upon rapamycin treatment, thereby limiting rapamycin efficacy. Together, our data indicate that rapamycin-mediated MAPK13 mRNA stabilization underlies drug resistance, and it should be considered as a promising therapeutic target to sensitize cancer cells to rapamycin.

5.
Mol Cell ; 83(16): 3010-3026.e8, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37595559

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth that stimulates macromolecule synthesis through transcription, RNA processing, and post-translational modification of metabolic enzymes. However, the mechanisms of how mTORC1 orchestrates multiple steps of gene expression programs remain unclear. Here, we identify family with sequence similarity 120A (FAM120A) as a transcription co-activator that couples transcription and splicing of de novo lipid synthesis enzymes downstream of mTORC1-serine/arginine-rich protein kinase 2 (SRPK2) signaling. The mTORC1-activated SRPK2 phosphorylates splicing factor serine/arginine-rich splicing factor 1 (SRSF1), enhancing its binding to FAM120A. FAM120A directly interacts with a lipogenic transcription factor SREBP1 at active promoters, thereby bridging the newly transcribed lipogenic genes from RNA polymerase II to the SRSF1 and U1-70K-containing RNA-splicing machinery. This mTORC1-regulated, multi-protein complex promotes efficient splicing and stability of lipogenic transcripts, resulting in fatty acid synthesis and cancer cell proliferation. These results elucidate FAM120A as a critical transcription co-factor that connects mTORC1-dependent gene regulation programs for anabolic cell growth.


Asunto(s)
Arginina , Lipogénesis , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Lipogénesis/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Factores de Empalme de ARN , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Humanos , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo
6.
Front Plant Sci ; 14: 1066708, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844099

RESUMEN

The plastid genome has proven to be an effective tool for examining deep correlations in plant phylogenetics, owing to its highly conserved structure, uniparental inheritance, and limited variation in evolutionary rates. Iridaceae, comprising more than 2,000 species, includes numerous economically significant taxa that are frequently utilized in food industries and medicines and for ornamental and horticulture purposes. Molecular studies on chloroplast DNA have confirmed the position of this family in the order Asparagales with non-asparagoids. The current subfamilial classification of Iridaceae recognizes seven subfamilies-Isophysioideae, Nivenioideae, Iridoideae, Crocoideae, Geosiridaceae, Aristeoideae, and Patersonioideae-which are supported by limited plastid DNA regions. To date, no comparative phylogenomic studies have been conducted on the family Iridaceae. We assembled and annotated (de novo) the plastid genomes of 24 taxa together with seven published species representing all the seven subfamilies of Iridaceae and performed comparative genomics using the Illumina MiSeq platform. The plastomes of the autotrophic Iridaceae represent 79 protein-coding, 30 tRNA, and four rRNA genes, with lengths ranging from 150,062 to 164,622 bp. The phylogenetic analysis of the plastome sequences based on maximum parsimony, maximum likelihood, and Bayesian inference analyses suggested that Watsonia and Gladiolus were closely related, supported by strong support values, which differed considerably from recent phylogenetic studies. In addition, we identified genomic events, such as sequence inversions, deletions, mutations, and pseudogenization, in some species. Furthermore, the largest nucleotide variability was found in the seven plastome regions, which can be used in future phylogenetic studies. Notably, three subfamilies-Crocoideae, Nivenioideae, and Aristeoideae-shared a common ycf2 gene locus deletion. Our study is a preliminary report of a comparative study of the complete plastid genomes of 7/7 subfamilies and 9/10 tribes, elucidating the structural characteristics and shedding light on plastome evolution and phylogenetic relationships within Iridaceae. Additionally, further research is required to update the relative position of Watsonia within the tribal classification of the subfamily Crocoideae.

7.
Mitochondrial DNA B Resour ; 8(1): 119-123, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36685657

RESUMEN

Ajuga spectabilis Nakai is a Korean endemic species in Lamiaceae. In spite of its importance, genomic studies are not performed on this species. Here, we report the complete plastid genome sequences of A. spectabilis, which will provide valuable information for its natural conservation and future studies for the plastid genome evolution. The plastid genome is 150,417 bp in length, containing a large single-copy region (LSC) of 82,140 bp and a small single-copy (SSC) region of 17,165 bp which are separated by a pair of inverted repeats (IR) of 25,556 bp. It encodes 113 genes, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. The overall GC content is 38.3%, and those in the LSC, SSC, and IR regions are 36.4%, 32.2%, and 43.3%, respectively, which is consistent with other Ajuga species. Our phylogenetic analysis revealed that A. spectabilis formed a close relationship with A. ciliata and A. decumbens.

8.
Cells ; 11(19)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36230897

RESUMEN

Osteoarthritis (OA) is a chronic degenerative joint disease accompanied by an inflammatory milieu that results in painful joints. The pathogenesis of OA is multifactorial, with genetic predisposition, environmental factors, and traumatic injury resulting in the direct or indirect loss of cartilage. The articular cartilage can also be damaged by direct focal traumatic injury. Articular cartilage provides a smooth, deformable bearing surface with a low coefficient of friction, increased contact area, and reduced contact stress. Articular type II hyaline cartilage lines the synovial joints and, when injured, has a limited ability for repair, except for the most superficial layers via diffusion from the synovial fluid, secondary to no blood supply, a complex structure, and a low metabolic rate. Restoring the articular surface can relieve pain and restore function. Although many strategies have been developed to regenerate type II collagen based on the extent of the lesion, surgical treatments are still evolving. The peroxisome proliferator-activated receptor delta (PPARδ) agonist and collagen treatment of mesenchymal stem cells (MSCs) enhance the chondrogenic capacity in vitro. We present a novel technique for cartilage restoration in a rabbit cartilage osteochondral defect model using a PPARδ agonist (GW0742)-infused 3D collagen scaffold to induce type II cartilage from MSCs.


Asunto(s)
Cartílago Articular , Osteoartritis , PPAR delta , Animales , Cartílago Articular/metabolismo , Condrogénesis , Colágeno/metabolismo , Colágeno Tipo II/metabolismo , Osteoartritis/metabolismo , PPAR delta/metabolismo , Conejos
9.
Nat Commun ; 13(1): 6303, 2022 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-36272977

RESUMEN

Regulated in development and DNA damage response 1 (REDD1) expression is upregulated in response to metabolic imbalance and obesity. However, its role in obesity-associated complications is unclear. Here, we demonstrate that the REDD1-NF-κB axis is crucial for metabolic inflammation and dysregulation. Mice lacking Redd1 in the whole body or adipocytes exhibited restrained diet-induced obesity, inflammation, insulin resistance, and hepatic steatosis. Myeloid Redd1-deficient mice showed similar results, without restrained obesity and hepatic steatosis. Redd1-deficient adipose-derived stem cells lost their potential to differentiate into adipocytes; however, REDD1 overexpression stimulated preadipocyte differentiation and proinflammatory cytokine expression through atypical IKK-independent NF-κB activation by sequestering IκBα from the NF-κB/IκBα complex. REDD1 with mutated Lys219/220Ala, key amino acid residues for IκBα binding, could not stimulate NF-κB activation, adipogenesis, and inflammation in vitro and prevented obesity-related phenotypes in knock-in mice. The REDD1-atypical NF-κB activation axis is a therapeutic target for obesity, meta-inflammation, and metabolic complications.


Asunto(s)
Hígado Graso , FN-kappa B , Ratones , Animales , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa/genética , Obesidad/complicaciones , Obesidad/genética , Obesidad/metabolismo , Inflamación/metabolismo , Hígado Graso/metabolismo , Citocinas , Aminoácidos
10.
Sci Rep ; 12(1): 16262, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36171257

RESUMEN

This study was to understand the genetic structure and diversity of the Korean Malus species. We used genotyping-by-sequencing (GBS) technology to analyze samples of 112 individuals belonging to 18 populations of wild Malus spp. Using GBS, we identified thousands of single nucleotide polymorphisms in the species analyzed. M. baccata and M. toringo, two dominant mainland species of the Korean Peninsula, were distinguishable based on their genetic structure. However, M. toringo collected from Jeju Island exhibited a different genetic profile than that from the mainland. We identified M. cf. micromalus as a hybrid resulting from the Jeju Island M. toringo (pollen donor) and the mainland M. baccata, (pollen recipient). Putative M. mandshurica distributed on the Korean Peninsula showed a high structural and genetic similarity with M. baccata, indicating that it might be an ecotype. Overall, this study contributes to the understanding of the population history and genetic structure of Malus in the Korean Peninsula.


Asunto(s)
Malus , Estructuras Genéticas , Variación Genética , Genotipo , Humanos , Malus/genética , República de Corea
11.
Sci Rep ; 12(1): 10827, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35760862

RESUMEN

The interaction of an intense laser with a solid foil target can drive [Formula: see text] TV/m electric fields, accelerating ions to MeV energies. In this study, we experimentally observe that structured targets can dramatically enhance proton acceleration in the target normal sheath acceleration regime. At the Texas Petawatt Laser facility, we compared proton acceleration from a [Formula: see text] flat Ag foil, to a fixed microtube structure 3D printed on the front side of the same foil type. A pulse length (140-450 fs) and intensity ((4-10) [Formula: see text] W/cm[Formula: see text]) study found an optimum laser configuration (140 fs, 4 [Formula: see text] W/cm[Formula: see text]), in which microtube targets increase the proton cutoff energy by 50% and the yield of highly energetic protons ([Formula: see text] MeV) by a factor of 8[Formula: see text]. When the laser intensity reaches [Formula: see text] W/cm[Formula: see text], the prepulse shutters the microtubes with an overcritical plasma, damping their performance. 2D particle-in-cell simulations are performed, with and without the preplasma profile imported, to better understand the coupling of laser energy to the microtube targets. The simulations are in qualitative agreement with the experimental results, and show that the prepulse is necessary to account for when the laser intensity is sufficiently high.

12.
Front Plant Sci ; 13: 850170, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35586214

RESUMEN

Understanding of intercontinental distribution in the Northern Hemisphere has attracted a lot of attention from botanists. However, although Orchidaceae is the largest group of angiosperms, biogeographical studies on the disjunctive pattern have not been sufficient for this family. Goodyera R. Br. (tribe Cranichideae, subfamily Orchidoideae, family Orchidaceae) is widely distributed in temperate and tropical regions. Although the phylogenetic relationship of Goodyera inferred from both morphological and molecular data has been conducted, the sampled taxa were mainly distributed in Asia regions that resulted in non-monophyly of this genus. In this study, the complete plastid genomes of Goodyera, generated by next-generation sequencing (NGS) technique and sampled in East Asia and North America, were used to reconstruct phylogeny and explore the historical biogeography. A total of 18 Goodyera species including seven newly sequenced species were analyzed. Based on 79 protein-coding genes, the phylogenetic analysis revealed that Goodyera could be subdivided into four subclades with high support values. The polyphyletic relationships among Goodyera taxa were confirmed, and the unclear position of G. foliosa was also resolved. The datasets that are composed of the 14 coding sequences (CDS) (matK, atpF, ndhK, accD, cemA, clpP, rpoA, rpl22, ndhF, ccsA, ndhD, ndhI, ndhA, and ycf 1) showed the same topology derived from 79 protein-coding genes. Molecular dating analyses revealed the origin of Goodyera in the mid-Miocene (15.75 Mya). Nearctic clade of Goodyera was diverged at 10.88 Mya from their most recent common ancestor (MRCA). The biogeographical reconstruction suggests that subtropical or tropical Asia is the origin of Goodyera and it has subsequently spread to temperate Asia during the Miocene. In addition, Nearctic clade is derived from East Asian species through Bering Land Bridge (BLB) during the Miocene. The speciation of Goodyera is most likely to have occurred during Miocene, and climatic and geological changes are thought to have had a part in this diversification. Our findings propose both origin and vicariance events of Goodyera for the first time and add an example for the biogeographical history of the Northern Hemisphere.

13.
Plant Divers ; 44(2): 170-180, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35505990

RESUMEN

Endemic plants are important for understanding phylogenetic relationships, biogeographical history, and genetic variation because of their restricted distribution and their role in conserving biodiversity. Here, we investigated the phylogenetic relationships of the Korean endemic Fraxinus chiisanensis by reconstructing the molecular phylogeny of Fraxinus based on two nuclear DNA (nrITS and phantastica) and two chloroplast DNA (psbA-trnH and rpl32-trnL) regions. Within our fossil-calibrated phylogenetic framework, we also inferred the biogeographical history of F. chiisanensis. To provide a scientific basis for the conservation of F. chiisanensis, we determined the levels of genetic diversity and genetic differentiation in this species. Combining information from nuclear and chloroplast DNA sequence data, our molecular phylogenetic analyses identified F. chiisanensis as a genetically distinct unit from its sister group, Fraxinus platypoda from Japan. Our molecular dating analyses using nuclear and chloroplast DNA data sets show F. chiisanensis diverged from its sister F. platypoda in the Early or Middle Miocene and differentiated in the Late Miocene on the Korean Peninsula. Our results suggest that the divergence of F. chiisanensis was associated with the submergence of the East China Sea land bridge and enhanced monsoons in East Asia. When compared to F. platypoda, F. chiisanensis exhibits low genetic diversity within populations and high genetic differentiation among populations. These results help us to understand the evolutionary history of F. chiisanensis and to develop a conservation strategy for this species.

14.
Front Plant Sci ; 13: 825209, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360330

RESUMEN

Scientists have long been captivated by biogeographic disjunctions, and disjunctions between East Asia and North America have been particularly well-studied at the genus and family levels. By contrast, disjunctions between eastern and western Asia have received less attention. Euonymus L. is taxonomically divided into two sections based on the number of cells in anthers as follows: E. sect. Uniloculares has one-celled anthers and occurs mainly in Asia, whereas E. sect. Biloculares has two-celled anthers and is distributed globally. We used Illumina sequencing to investigate the genomes of four species in sect. Uniloculares. The chloroplast (cp) genomes are highly conserved (157,290-158,094 bp). Pseudogenisation of ndhF and intron loss in rps16 was detected. Based on the cp genomes of the four species of E. sect. Uniloculares, we propose a novel hypothesis of disjunction between eastern and western Asia. Biogeographic reconstruction and molecular dating revealed that sect. Uniloculares separated from its sect. Biloculares forebears 4.0 Mya during the Pliocene era. The radial diversification of sect. Uniloculares from East Asia and the establishment of the western Asian clade during the Pleistocene era (1.9 Mya) were the results of both dispersal and vicariance, making the section the youngest diverged clade conforming to age estimation. The centre of origin of sect. Uniloculares was determined to be in East Asia. Disjunctions and diversification between eastern and western Asia in sect. Uniloculares are thought to have been caused by changes in monsoon patterns, temperature variations, and the emergence of the Gobi Desert.

15.
Am J Sports Med ; 50(1): 142-151, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34850639

RESUMEN

BACKGROUND: During high tibial osteotomy (HTO), the superficial medial collateral ligament (sMCL) is cut or released at any degree to expose the osteotomy site and achieve the targeted alignment correction according to the surgeon's preference. However, it is still unclear whether transection of sMCL increases valgus laxity. PURPOSE: We aimed to assess the outcomes and safety of sMCL transection, especially focusing on iatrogenic valgus instability. STUDY DESIGN: Case series; Level of evidence, 4. METHODS: Seventy-two patients (89 knees) who underwent medial open wedge HTO (MOWHTO) with transection of the sMCL between October 2013 and September 2018 were retrospectively investigated. Clinical evaluations, including the International Knee Documentation Committee (IKDC) score, Knee injury and Osteoarthritis Outcome Score (KOOS), and Tegner and Lysholm scores, were performed preoperatively and at 2 years postoperatively. The radiographic parameters hip-knee-ankle (HKA) angle, joint line convergence angle on standing radiographs (standing JLCA), and weightbearing line (WBL) ratio were assessed preoperatively and at 3 months, 6 months, 1 year, and 2 years postoperatively. To evaluate valgus laxity, we assessed the valgus JLCA and medial joint opening (MJO) at the aforementioned time points using valgus stress radiographs. RESULTS: All clinical results at the 2-year follow-up were significantly improved compared with those obtained at the preoperative assessment (P < .001). The postoperative HKA angle significantly differed from the preoperative one, and no significant valgus progression was observed during follow-up (preoperative, 8.5°± 2.7°; 3 months, -3.5°± 2.0°; 6 months, -3.2°± 2.3°; 1 year, -3.1°± 2.3°; 2 years, -2.9°± 2.5°; P < .001) The mean WBL ratio was 62.5% ± 9.0% at 2 years postoperatively. The postoperative valgus JLCA at all follow-up points did not significantly change compared with the preoperative valgus JLCA (preoperative, -0.1°± 2.1°; 3 months, -0.2°± 2.4°; 6 months, -0.1°± 2.5°; 1 year, 0.1°± 2.5°; 2 years, 0.2°± 2.2°) The postoperative MJO at all follow-up points did not significantly change compared with the preoperative MJO (preoperative, 7.1 ± 1.7 mm; 3 months, 7.0 ± 1.7 mm; 6 months, 6.9 ± 1.9 mm; 1 year, 6.7 ± 1.8 mm; 2 years, 6.8 ± 1.8 mm). CONCLUSION: Transection of the sMCL during MOWHTO does not increase valgus laxity and could yield desirable clinical and radiographic results.


Asunto(s)
Inestabilidad de la Articulación , Osteoartritis de la Rodilla , Humanos , Inestabilidad de la Articulación/cirugía , Articulación de la Rodilla , Osteotomía , Estudios Retrospectivos , Tibia/cirugía
16.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34884886

RESUMEN

Heme oxygenase-1 (HO-1) exerts beneficial effects, including angiogenesis and energy metabolism via the peroxisome proliferator-activating receptor-γ coactivator-1α (PGC-1α)-estrogen-related receptor α (ERRα) pathway in astrocytes. However, the role of Korean red ginseng extract (KRGE) in HO-1-mediated mitochondrial function in traumatic brain injury (TBI) is not well-elucidated. We found that HO-1 was upregulated in astrocytes located in peri-injured brain regions after a TBI, following exposure to KRGE. Experiments with pharmacological inhibitors and target-specific siRNAs revealed that HO-1 levels highly correlated with increased AMP-activated protein kinase α (AMPKα) activation, which led to the PGC-1α-ERRα axis-induced increases in mitochondrial functions (detected based on expression of cytochrome c oxidase subunit 2 (MTCO2) and cytochrome c as well as O2 consumption and ATP production). Knockdown of ERRα significantly reduced the p-AMPKα/AMPKα ratio and PGC-1α expression, leading to AMPKα-PGC-1α-ERRα circuit formation. Inactivation of HO by injecting the HO inhibitor Sn(IV) protoporphyrin IX dichloride diminished the expression of p-AMPKα, PGC-1α, ERRα, MTCO2, and cytochrome c in the KRGE-administered peri-injured region of a brain subjected to TBI. These data suggest that KRGE enhanced astrocytic mitochondrial function via a HO-1-mediated AMPKα-PGC-1α-ERRα circuit and consequent oxidative phosphorylation, O2 consumption, and ATP production. This circuit may play an important role in repairing neurovascular function after TBI in the peri-injured region by stimulating astrocytic mitochondrial biogenesis.


Asunto(s)
Astrocitos/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Hemo-Oxigenasa 1/metabolismo , Mitocondrias/metabolismo , Panax , Proteínas Quinasas Activadas por AMP/genética , Animales , Astrocitos/metabolismo , Astrocitos/fisiología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/fisiopatología , Citocromos c/metabolismo , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/fisiología , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Receptores de Estrógenos/genética , Receptor Relacionado con Estrógeno ERRalfa
17.
Exp Mol Med ; 53(10): 1612-1622, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34697389

RESUMEN

Low-dose metronomic chemotherapy (LDMC) inhibits tumor angiogenesis and growth by targeting tumor-associated endothelial cells, but the molecular mechanism has not been fully elucidated. Here, we examined the functional role of regulated in development and DNA damage responses 1 (REDD1), an inhibitor of mammalian target of rapamycin complex 1 (mTORC1), in LDMC-mediated endothelial cell dysfunction. Low-dose doxorubicin (DOX) treatment induced REDD1 expression in cultured vascular and lymphatic endothelial cells and subsequently repressed the mRNA expression of mTORC1-dependent translation of vascular endothelial growth factor receptor (Vegfr)-2/3, resulting in the inhibition of VEGF-mediated angiogenesis and lymphangiogenesis. These regulatory effects of DOX-induced REDD1 expression were additionally confirmed by loss- and gain-of-function studies. Furthermore, LDMC with DOX significantly suppressed tumor angiogenesis, lymphangiogenesis, vascular permeability, growth, and metastasis in B16 melanoma-bearing wild-type but not Redd1-deficient mice. Altogether, our findings indicate that REDD1 is a crucial determinant of LDMC-mediated functional dysregulation of tumor vascular and lymphatic endothelial cells by translational repression of Vegfr-2/3 transcripts, supporting the potential therapeutic properties of REDD1 in highly progressive or metastatic tumors.


Asunto(s)
Melanoma Experimental , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Animales , Regulación hacia Abajo , Doxorrubicina/farmacología , Células Endoteliales/metabolismo , Linfangiogénesis/fisiología , Mamíferos/metabolismo , Melanoma Experimental/tratamiento farmacológico , Ratones , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
18.
BMB Rep ; 54(9): 470-475, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34488932

RESUMEN

Low-dose metronomic chemotherapy has been introduced as a less toxic and effective strategy to inhibit tumor angiogenesis, but its anti-angiogenic mechanism on endothelial progenitor cells (EPCs) has not been fully elucidated. Here, we investigated the functional role of regulated in development and DNA damage response 1 (REDD1), an endogenous inhibitor of mTORC1, in low-dose doxorubicin (DOX)-mediated dysregulation of EPC functions. DOX treatment induced REDD1 expression in bone marrow mononuclear cells (BMMNCs) and subsequently reduced mTORC1-dependent translation of endothelial growth factor (VEGF) receptor (Vegfr)-2 mRNA, but not that of the mRNA transcripts for Vegfr-1, epidermal growth factor receptor, and insulin-like growth factor-1 receptor. This selective event was a risk factor for the inhibition of BMMNC differentiation into EPCs and their angiogenic responses to VEGF-A, but was not observed in Redd1-deficient BMMNCs. Low-dose metronomic DOX treatment reduced the mobilization of circulating EPCs in B16 melanoma-bearing wild-type but not Redd1-deficient mice. However, REDD1 overexpression inhibited the differentiation and mobilization of EPCs in both wild-type and Redd1-deficient mice. These data suggest that REDD1 is crucial for metronomic DOX-mediated EPC dysfunction through the translational repression of Vegfr-2 transcript, providing REDD1 as a potential therapeutic target for the inhibition of tumor angiogenesis and tumor progression. [BMB Reports 2021; 54(9): 470-475].


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Doxorrubicina/farmacología , Factores de Transcripción/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Células Cultivadas , Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Melanoma Experimental/irrigación sanguínea , Melanoma Experimental/patología , Ratones , Ratones Noqueados , Neovascularización Patológica , Óxido Nítrico/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Trasplante Heterólogo , Factor A de Crecimiento Endotelial Vascular/farmacología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
19.
Front Pharmacol ; 12: 607403, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935701

RESUMEN

Alzheimer's disease (AD) pathogenesis is linked to amyloid plaque accumulation, neuronal loss, and brain inflammation. Ficus erecta Thunb. is a food and medicinal plant used to treat inflammatory diseases. Here, we investigated the neuroprotective effects of F. erecta Thunb. against cognitive deficit and neuronal damage in a mouse model of amyloid-ß (Aß)-induced AD. First, we confirmed the inhibitory effects of ethanol extracts of F. erecta (EEFE) leaves on Aß aggregation in vivo and in vitro. Next, behavioral tests (passive avoidance task and Morris water maze test) revealed EEFE markedly improved cognitive impairment in Aß-injected mice. Furthermore, EEFE reduced neuronal loss and the expression of neuronal nuclei (NeuN), a neuronal marker, in brain tissues of Aß-injected mice. EEFE significantly reversed Aß-induced suppression of cAMP response element-binding protein (CREB) phosphorylation and brain-derived neurotrophic factor (BDNF) expression, indicating neuroprotection was mediated by the CREB/BDNF signaling. Moreover, EEFE significantly suppressed the inflammatory cytokines interleukin 1beta (IL-1ß) and tumor necrosis factor alpha (TNF-α), and expression of ionized calcium-binding adaptor molecule 1 (Iba-1), a marker of microglial activation, in brain tissues of Aß-injected mice, suggesting anti-neuroinflammatory effects. Taken together, EEFE protects against cognitive deficit and neuronal damage in AD-like mice via activation of the CREB/BDNF signaling and upregulation of the inflammatory cytokines.

20.
Arthrosc Tech ; 10(4): e1017-e1024, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33981545

RESUMEN

Medial meniscus posterior root tear is a disruptive injury causing significant sequelae. Several techniques to repair and maintain the native function of the medial meniscus have been introduced, but limitations have been reported in terms of their results. In this current note, the authors introduce the arthroscopic transtibial pull-out repair with whip running suture technique, which may not only avoid the potential risk of meniscus cut-through by the suture material but also optimize the reduction of the extruded meniscus. By suturing the posteromedial capsule and peripheral meniscus, more medialization force can be directly applied to the extruded part of the meniscus, and normal hoop tension can be restored.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA