Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Mol Med Rep ; 30(1)2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38785154

RESUMEN

Although there are several types of radiation exposure, it is debated whether low­dose­rate (LDR) irradiation (IR) affects the body. Since the small intestine is a radiation­sensitive organ, the present study aimed to evaluate how it changes when exposed to LDR IR and identify the genes sensitive to these doses. After undergoing LDR (6.0 mGy/h) γ radiation exposure, intestinal RNA from BALB/c mice was extracted 1 and 24 h later. Mouse whole genome microarrays were used to explore radiation­induced transcriptional alterations. Reverse transcription­quantitative (RT­q) PCR was used to examine time­ and dose­dependent radiation responses. The histopathological status of the jejunum in the radiated mouse was not changed by 10 mGy of LDR IR; however, 23 genes were upregulated in response to LDR IR of the jejunum in mice after 1 and 24 h of exposure. Upregulated genes were selected to validate the results of the RNA sequencing analysis for RT­qPCR detection and results showed that only Na+/K+ transporting subunit α4, glucose­6­phosphatase catalytic subunit 2 (G6PC2), mucin 6 (MUC6) and transient receptor potential cation channel subfamily V member 6 levels significantly increased after 24 h of LDR IR. Furthermore, G6PC2 and MUC6 were notable genes induced by LDR IR exposure according to protein expression via western blot analysis. The mRNA levels of G6PC2 and MUC6 were significantly elevated within 24 h under three conditions: i) Exposure to LDR IR, ii) repeated exposure to LDR IR and iii) exposure to LDR IR in the presence of inflammatory bowel disease. These results could contribute to an improved understanding of immediate radiation reactions and biomarker development to identify radiation­susceptible individuals before histopathological changes become noticeable. However, further investigation into the specific mechanisms involving G6PC2 and MUC6 is required to accomplish this.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Mucina 6 , Animales , Ratones , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Enfermedades Inflamatorias del Intestino/genética , Mucina 6/metabolismo , Mucina 6/genética , Ratones Endogámicos BALB C , Glucosa-6-Fosfatasa/metabolismo , Glucosa-6-Fosfatasa/genética , Masculino , Yeyuno/efectos de la radiación , Yeyuno/metabolismo , Yeyuno/patología , Rayos gamma/efectos adversos , Intestinos/efectos de la radiación , Intestinos/patología , Relación Dosis-Respuesta en la Radiación , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de la radiación , Mucosa Intestinal/patología
2.
Discov Med ; 36(184): 898-912, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38798250

RESUMEN

Radiation therapy targeting the central nervous system is widely utilized for the management of various brain tumors, significantly prolonging patient survival. Presently, investigations are assessing both clinical and preclinical applications of low-dose radiation (LDR) for the treatment of neuropathological conditions beyond tumor therapy. Special focus is given to refractory neurodegenerative diseases linked to neuroinflammation, such as Alzheimer's and Parkinson's diseases, where LDR has shown promising results. This comprehensive review examines the existing experimental data regarding the utilization of LDR in neurological disorders. It covers potential advantages in reducing neurodegenerative alterations and inflammation, as well as possible adverse effects, including neurological impairments. The review underscores the importance of the exposure protocol and the age at which LDR is administered in the context of the nervous system's pathological and physiological states, as these elements are crucial in determining LDR's therapeutic and toxic outcomes. The article concludes with a discussion on the future directions and challenges in optimizing LDR use, aiming to reduce toxicity while effectively managing neurological disorders.


Asunto(s)
Enfermedades del Sistema Nervioso , Humanos , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/radioterapia , Animales , Dosificación Radioterapéutica , Enfermedades Neurodegenerativas/radioterapia , Enfermedades Neurodegenerativas/terapia , Radioterapia/métodos , Radioterapia/efectos adversos , Relación Dosis-Respuesta en la Radiación
3.
Anim Cells Syst (Seoul) ; 28(1): 198-215, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38693920

RESUMEN

Parkinson's disease (PD) often results in hippocampal dysfunction, which leads to cognitive and emotional challenges and synaptic irregularities. This study attempted to assess behavioral anomalies and identify differentially expressed genes (DEGs) within the hippocampus of a hemiparkinsonian rat model to potentially uncover novel genetic candidates linked to hippocampal dysfunction. Striatal 6-hydroxydopamine (6-OHDA) infusions were performed unilaterally in the brains of adult SD rats, while dopaminergic impairments were verified in rats with 6-OHDA-lesioned striata. RNA sequencing and gene expression analysis unveiled 1018 DEGs in the ipsilateral rat hippocampus following 6-OHDA infusion: 631 genes exhibited upregulation, while 387 genes were downregulated (with FDR-adjusted p-value < 0.05 and absolute fold-change > 1.5). Gene ontology analysis of DEGs indicated that alterations in the hippocampi of 6-OHDA-lesioned rats were primarily associated with synaptic signaling, axon development, behavior, postsynaptic membrane, synaptic membrane, neurotransmitter receptor activity, and peptide receptor activity. The Kyoto Encyclopedia of Genes and Genomes analysis of DEGs demonstrated significant enrichment of the neuroactive ligand-receptor interaction, calcium signaling pathway, cAMP signaling pathway, axon guidance, and notch signaling pathway in rat hippocampi that had been subjected to striatal 6-OHDA infusion. STRING analysis confirmed a notable upregulation of eight hub genes (Notch3, Gng4, Itga3, Grin2d, Hgf, Fgf11, Htr3a, and Col6a2), along with a significant downregulation of two hub genes (Itga11 and Plp1), as validated by reverse transcription-quantitative polymerase chain reaction. This study provides a comprehensive transcriptomic profile of the hippocampi in a hemiparkinsonian rat model, thereby offering insights into the signaling pathways underlying hippocampal dysfunction.

4.
Pharmaceutics ; 16(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675190

RESUMEN

Scrophularia have traditionally been used as herbal medicines to treat neuritis, sore throats, and laryngitis. In particular, S. takesimensis, a Korean endemic species with restricted distribution on Ulleung Island, holds significant resource and genetic value. However, its pharmacological properties have not been thoroughly evaluated. Thus, we provide detailed morphological characteristics and genomic information for S. takesimensis in this study. Moreover, its pharmacological activity was evaluated in an ovalbumin-induced asthma rat model, using extracts of S. takesimensis roots (100 or 200 mg/kg). The distinguishing features of S. takesimensis from related species include the presence or absence of stem wings, leaf shape, and habitat. The chloroplast (cp) genome of this species is 152,420 bp long and exhibits a conserved quadripartite structure. A total of 114 genes were identified, which included 80 protein-coding genes, 30 transfer RNA (tRNA) genes, and 4 ribosomal RNA (rRNA) genes. The gene order, content, and orientation of the S. takesimensis cp genome was highly conserved and consistent with the general structure observed in S. buergeriana and S. ningpoensis cp genomes. Confirming the anti-inflammatory effects of S. takesimensis extract (STE) using an established mouse model of ovalbumin-induced asthma, we observed reduced asthmatic phenotypes, including inflammatory cell infiltration, mucus production, and suppression of T helper 2 (Th2) cell. Furthermore, STE treatment reduced Th2 cell activation and differentiation. This study underscores the medicinal value of S. takesimensis. The importance of preserving S. takesimensis was revealed and crucial insights were provided for further research on its utilization as a medicinal resource.

5.
Stem Cell Res Ther ; 15(1): 118, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659053

RESUMEN

BACKGROUND: Cerebral organoids (COs) are the most advanced in vitro models that resemble the human brain. The use of COs as a model for Alzheimer's disease (AD), as well as other brain diseases, has recently gained attention. This study aimed to develop a human AD CO model using normal human pluripotent stem cells (hPSCs) that recapitulates the pathological phenotypes of AD and to determine the usefulness of this model for drug screening. METHODS: We established AD hPSC lines from normal hPSCs by introducing genes that harbor familial AD mutations, and the COs were generated using these hPSC lines. The pathological features of AD, including extensive amyloid-ß (Aß) accumulation, tauopathy, and neurodegeneration, were analyzed using enzyme-linked immunosorbent assay, Amylo-Glo staining, thioflavin-S staining, immunohistochemistry, Bielschowsky's staining, and western blot analysis. RESULTS: The AD COs exhibited extensive Aß accumulation. The levels of paired helical filament tau and neurofibrillary tangle-like silver deposits were highly increased in the AD COs. The number of cells immunoreactive for cleaved caspase-3 was significantly increased in the AD COs. In addition, treatment of AD COs with BACE1 inhibitor IV, a ß-secretase inhibitor, and compound E, a γ-secretase inhibitor, significantly attenuated the AD pathological features. CONCLUSION: Our model effectively recapitulates AD pathology. Hence, it is a valuable platform for understanding the mechanisms underlying AD pathogenesis and can be used to test the efficacy of anti-AD drugs.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Organoides , Células Madre Pluripotentes , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Organoides/metabolismo , Organoides/patología , Células Madre Pluripotentes/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Proteínas tau/metabolismo , Proteínas tau/genética , Ácido Aspártico Endopeptidasas/metabolismo , Ácido Aspártico Endopeptidasas/genética , Encéfalo/metabolismo , Encéfalo/patología , Modelos Biológicos
6.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38543055

RESUMEN

Scutellaria baicalensis Georgi and Raphanus Sativus Linne herbal mixture (SRE) is a Chinese herbal medicine. In this study, we aimed to evaluate the therapeutic efficacy of SRE as an active ingredient for 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD) and to predict the underlying therapeutic mechanisms and involved pathways using network pharmacological analysis. Treatment with SRE accelerated the development of AD-like lesions, improving thickness and edema of the epidermis. Moreover, administering the SRE to AD-like mice suppressed immunoglobulin E and interleukin-4 cytokine and reduced T lymphocyte differentiation. In silico, network analysis was used to predict the exact genes, proteins, and pathways responsible for the therapeutic effect of the SRE against DNCB-induced AD. These results indicated that the SRE exerted protective effects on the DNCB-induced AD-like model by attenuating histopathological changes and suppressing the levels of inflammatory mediators. Therefore, the SRE can potentially be a new remedy for improving AD and other inflammatory diseases and predicting the intracellular signaling pathways and target genes involved. This therapeutic effect of the SRE on AD can be used to treat DNCB-induced AD and its associated symptoms.

7.
Zool Res ; 45(2): 398-414, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38485508

RESUMEN

Structural plasticity is critical for the functional diversity of neurons in the brain. Experimental autoimmune encephalomyelitis (EAE) is the most commonly used model for multiple sclerosis (MS), successfully mimicking its key pathological features (inflammation, demyelination, axonal loss, and gliosis) and clinical symptoms (motor and non-motor dysfunctions). Recent studies have demonstrated the importance of synaptic plasticity in EAE pathogenesis. In the present study, we investigated the features of behavioral alteration and hippocampal structural plasticity in EAE-affected mice in the early phase (11 days post-immunization, DPI) and chronic phase (28 DPI). EAE-affected mice exhibited hippocampus-related behavioral dysfunction in the open field test during both early and chronic phases. Dendritic complexity was largely affected in the cornu ammonis 1 (CA1) and CA3 apical and dentate gyrus (DG) subregions of the hippocampus during the chronic phase, while this effect was only noted in the CA1 apical subregion in the early phase. Moreover, dendritic spine density was reduced in the hippocampal CA1 and CA3 apical/basal and DG subregions in the early phase of EAE, but only reduced in the DG subregion during the chronic phase. Furthermore, mRNA levels of proinflammatory cytokines ( Il1ß, Tnfα, and Ifnγ) and glial cell markers ( Gfap and Cd68) were significantly increased, whereas the expression of activity-regulated cytoskeleton-associated protein (ARC) was reduced during the chronic phase. Similarly, exposure to the aforementioned cytokines in primary cultures of hippocampal neurons reduced dendritic complexity and ARC expression. Primary cultures of hippocampal neurons also showed significantly reduced extracellular signal-regulated kinase (ERK) phosphorylation upon treatment with proinflammatory cytokines. Collectively, these results suggest that autoimmune neuroinflammation alters structural plasticity in the hippocampus, possibly through the ERK-ARC pathway, indicating that this alteration may be associated with hippocampal dysfunctions in EAE.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Enfermedades de los Roedores , Ratones , Animales , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Esclerosis Múltiple/veterinaria , Hipocampo/metabolismo , Neuronas/patología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/veterinaria , Citocinas/metabolismo , Enfermedades de los Roedores/metabolismo , Enfermedades de los Roedores/patología
8.
Vet Med (Praha) ; 69(1): 8-17, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38465002

RESUMEN

Asian sand dust (ASD), also called China dust or yellow dust, mainly occurs in East Asia during spring and autumn. Because ASD enters the body mainly through the respiratory system, it can cause respiratory disorders or worsen underlying diseases. Because of this, it has become an important health concern that threatens the well-being of humans and animals. In this study, we investigated the effects of 15 and 30 mg/kg of Pycnogenol (PYC15 and 30 groups), a pine bark extract, on ASD-induced pulmonary inflammation in mice. We evaluated the inflammatory cell counts, inflammatory cytokines, and matrix-metalloproteinase (MMP)-9 expression in animal models. PYC administration significantly decreased inflammatory cell infiltration into lung tissue; this was accompanied by a reduction in the levels of proinflammatory mediators including interleukin (IL)-1ß (P < 0.01), IL-6 (P < 0.01) and tumour necrosis factor-α (P < 0.01) in bronchoalveolar lavage fluids of ASD-exposed mice (ASD group). Histological analysis revealed that PYC suppressed ASD-induced pulmonary inflammation. Moreover, PYC suppressed the levels of matrix-metalloproteinase (MMP)-9 in the lung tissue of ASD-exposed mice, indicating that PYC reduced ASD-induced pulmonary inflammation by suppressing MMP-9. Together, these results indicate that PYC as the potential to treat ASD-driven pulmonary inflammation.

9.
Int J Mol Sci ; 25(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38203768

RESUMEN

Osteoarthritis (OA) is common and affected by several factors, such as age, weight, sex, and genetics. The pathogenesis of OA remains unclear. Therefore, using a rat model of monosodium iodoacetate (MIA)-induced OA, we examined genomic-wide DNA methylation using methyl-seq and characterized the transcriptome using RNA-seq in the articular cartilage tissue from a negative control (NC) and MIA-induced rats. We identified 170 genes (100 hypomethylated and upregulated genes and 70 hypermethylated and downregulated genes) regulated by DNA methylation in OA. DNA methylation-regulated genes were enriched in functions related to focal adhesion, extracellular matrix (ECM)-receptor interaction and the PI3K-Akt and Hippo signaling pathways. Functions related to extracellular matrix organization, extracellular matrix proteoglycans, and collagen formation were involved in OA. A molecular and protein-protein network was constructed using methylated expression-correlated genes. Erk1/2 was a downstream target of OA-induced changes in DNA methylation and RNA expression. We found that the integrin subunit alpha 2 (ITGA2) gene is important in focal adhesion, alpha6-beta4 integrin signaling, and the inflammatory response pathway in OA. Overall, gene expression changes because DNA methylation influences OA pathogenesis. ITGA2, whose gene expression changes are regulated by DNA methylation during OA onset, is a candidate gene. Our findings provide insights into the epigenetic targets of OA processes in rats.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Ratas , Metilación de ADN , Transcriptoma , Fosfatidilinositol 3-Quinasas , Integrina alfa2 , Ácido Yodoacético , Osteoartritis/inducido químicamente , Osteoartritis/genética
10.
Planta Med ; 90(1): 4-12, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37903549

RESUMEN

Agastache rugosa Kuntze (Lamiaceae; Labiatae), a medicinal and functional herb used to treat gastrointestinal diseases, grows well both on islands and inland areas in South Korea. Thus, we aimed to reveal the morphological and micromorphological differences between A. rugosa grown on island and inland areas and their pharmacological effects on gastritis in an animal model by combining morphological and mass spectrophotometric analyses. Morphological analysis showed that island A. rugosa had slightly smaller plants and leaves than inland plants; however, the density of all types of trichomes on the leaves, petioles, and stems of island A. rugosa was significantly higher than that of inland plants. The essential oil component analysis revealed that pulegone levels were substantially higher in island A. rugosa than in inland A. rugosa. Despite the differences between island and inland A. rugosa, treatment with both island and inland A. rugosa reduced gastric damages by more than 40% compared to the gastritis induction group. In addition, expression of inflammatory protein was reduced by about 30% by treatment of island and inland A. rugosa. The present study demonstrates quantitative differences in morphology and volatile components between island and inland plants; significant differences were not observed between the gastritis-inhibitory effects of island and inland A. rugosa, and the efficacy of island A. rugosa was found to be similar to that of A. rugosa grown in inland areas.


Asunto(s)
Agastache , Gastritis , Aceites Volátiles , Animales , Hojas de la Planta , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Gastritis/inducido químicamente , Gastritis/tratamiento farmacológico
11.
Anim Cells Syst (Seoul) ; 27(1): 436-446, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125760

RESUMEN

Dopamine (DA) plays a significant role in regulating hippocampal function, particularly in modulating synaptic plasticity. Despite this, a comprehensive understanding of the molecular mechanisms involved in neuroplasticity-related signaling influenced by DA remains incomplete. This study aimed to elucidate the changes in the expression of key molecules related to hippocampal neuroplasticity following DA depletion in rats. To induce DA depletion, unilateral striatal infusions of 6-hydroxydopamine (6-OHDA) were administered to adult Sprague-Dawley rats. The subsequent loss of nigrostriatal DAergic signaling in these 6-OHDA-lesioned rats was confirmed using an apomorphine-induced rotation test at 4 weeks post-infusion and by assessing the expression levels of tyrosine hydroxylase (TH) through immunohistochemistry and western blotting at 7 weeks post-infusion. A decrease in DAergic signaling, evidenced by reduced TH-positive immunoreactivity, was also noted in the ipsilateral hippocampus of the lesioned rats. Interestingly, 6-OHDA infusion led to increased phosphorylation of pivotal hippocampal plasticity-related proteins, including extracellular signal-regulated kinase (ERK), protein kinase B (Akt), glycogen synthase kinase 3ß (GSK3ß), and cAMP response element-binding protein (CREB), in the ipsilateral hippocampus 7 weeks following the infusion. To extend these findings, in vitro experiments were conducted on primary hippocampal neurons exposed to DA and/or the active D1/D2 DA receptor antagonist, flupentixol (Flux). DA inhibited the constitutive phosphorylation of ERK, Akt, GSK3, and CREB, while Flux restored these phosphorylation levels. Taken together, these findings indicate that DA depletion triggers an increase in plasticity-related signaling in the hippocampus, suggesting a possible compensatory mechanism that promotes activity-independent neuroplasticity following DA depletion.

12.
Vet Med (Praha) ; 68(6): 231-237, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37982001

RESUMEN

Extracellular signal-regulated kinase (ERK) has been implicated in mammalian testicular and epididymal development. This study aimed to investigate ERK expression in the immature and mature testes and epididymides of bulls. We evaluated ERK expression using immunoblot analysis and immunohistochemistry. Immunoblot analysis revealed that immature bull testes and epididymides had higher phosphorylated ERK (pERK) expression than mature bull testes and epididymides. pERK immunoreactivity was higher in immature epididymides than in immature testes. pERK was localised mostly in spermatogonia, undifferentiated sustentacular (Sertoli) cells, and interstitial (Leydig) cells in immature testes, as well as in some spermatocytes and spermatids in mature testes. In immature epididymides, the body and tail had higher pERK expression than the head, whereas pERK was broadly distributed throughout the stereocilia, basal cells, and connective tissues. pERK distribution in the head of mature epididymides was similar to that in immature epididymides, whereas few connective tissue cells were expressed in the body and tail of mature epididymides. Collectively, these results suggest that ERK is expressed in the testis and epididymis of immature and mature bulls with varying intensities, and the role of ERK in male reproductive organs may include the specific function of its development.

13.
Ecotoxicol Environ Saf ; 266: 115565, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37832485

RESUMEN

Exposure to particulate matter (PM) has been associated with a range of health impacts, including neurological abnormalities that affect neurodevelopment, neuroplasticity, and behavior. Recently, there has been growing interest in investigating the possible relationship between PM exposure and the onset and progression of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. However, the precise mechanism by which PM affects neurodegeneration is still unclear, even though several epidemiological and animal model studies have provided mechanistic insights. This article presents a review of the current research on the neurotoxicity of PM and its impact on neurodegenerative diseases. This review summarizes findings from epidemiological and animal model studies collected through searches in Google Scholar, PubMed, Web of Science, and Scopus. This review paper also discusses the reported effects of PM exposure on the central nervous system and highlights research gaps and future directions. The information presented in this review may inform public health policies aimed at reducing PM exposure and may contribute to the development of new treatments for neurodegenerative diseases. Further mechanistic and therapeutic research will be needed to fully understand the relationship between PM exposure and neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Síndromes de Neurotoxicidad , Animales , Material Particulado/toxicidad , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/epidemiología , Sistema Nervioso Central
14.
Pharmaceutics ; 15(9)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37765323

RESUMEN

Asthma is a pulmonary disease induced by the inhalation of aeroallergens and subsequent inappropriate immune responses. Camellia sinensis (L.) Kuntze has been evaluated as an effective antioxidant supplement produced from bioactive compounds, including flavonoids. In this study, we aimed to determine the effects of Camellia sinensis (L.) Kuntze extract (CE) on ovalbumin-induced allergic asthma. The components of CE were analyzed using high-performance liquid chromatography (HPLC) chromatogram patterns, and asthmatic animal models were induced via ovalbumin treatment. The antioxidant and anti-inflammatory effects of CE were evaluated using 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS), and nitric oxide (NO) assays. Seven compounds were detected in the CE chromatogram. In the ovalbumin-induced mouse model, CE treatment significantly decreased the inflammation index in the lung tissue. CE also significantly decreased eosinophilia and the production of inflammatory cytokines and OVA-specific IgE in animals with asthma. Collectively, our results indicate that CE has anti-inflammatory and antioxidant activities, and that CE treatment suppresses asthmatic progression, including mucin accumulation, inflammation, and OVA-specific IgE production.

15.
Sci Prog ; 106(3): 368504231198935, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37769294

RESUMEN

The purpose of this study was to establish the dose-response curves for biological dosimetry of the Dong Nam Institute of Radiological and Medical Sciences to monitor radiation exposure of local residents in the vicinity of the nuclear power plant. The blood samples of five healthy volunteers were irradiated with gamma ray, and each sample was divided equally for analysis of chromosomal aberrations by Giemsa staining and three-color fluorescence in situ hybridization painting of the triplet (chromosomes #1, #2, and #4). The results of chromosomal aberrations followed the Poisson distribution in all individual and averaged data which include inter-individual variation in radiation susceptibility. Cytogenetics Dose Estimate Software version 5.2 was used to fit the dose-response curve and to determine the coefficients of linear-quadratic equations. The goodness of fit of the curves and statistical significance of fitted α and ß-coefficients were confirmed in both Giemsa-based dicentric analysis and FISH-based translocation analysis. The coefficients calculated from the five-donor average data were almost identical in both of the analyses. We also present the results that the dose-response curve for dicentric chromosomes plus fragments could be more effective for dose estimation following low-dose radiation accidents.


Asunto(s)
Plantas de Energía Nuclear , Radiometría , Humanos , Hibridación Fluorescente in Situ , Radiometría/métodos , Aberraciones Cromosómicas , República de Corea
16.
Toxicol Res ; 39(3): 383-398, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37398561

RESUMEN

Collagen peptides are widely employed as therapeutic materials due to their numerous beneficial properties, including for the following uses: antiaging, antioxidant applications, antibacterial applications, wound healing, tissue engineering, medication delivery, and cosmetics. Although collagen peptides are useful in these applications, to our knowledge, few published studies have been undertaken on their repeated-dose toxicity. We evaluated the possible subchronic toxicity of a collagen peptide derived from skate (Raja kenojei) skin (CPSS) in Sprague-Dawley rats by administering repeated oral doses over 90 days. Rats of both sexes were assigned randomly to one of four experimental groups, respectively receiving 0, 500, 1000, or 2000 mg/kg/day of CPSS. At all doses tested, repeated oral CPSS administration had no treatment-related adverse effects in terms of clinical signs, body weight, food consumption, detailed clinical observation, sensory reactivity, functional assessment, urinalysis, ophthalmic examination, gross pathology, hematology, serum biochemistry, hormone analysis, organ weight, and histopathology. Even though there were some alterations in hematologic parameters, serum biochemistry parameters, organ weight, and histopathological findings, these did not follow a dose-response pattern and were within historical limits for control rats. The oral no-observed-adverse-effect level (NOAEL) of the CPSS was 2000 mg/kg/day for both male and female rats in the applied experimental circumstances, and no target organs were identified.

17.
Int J Radiat Biol ; 99(11): 1649-1659, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37162420

RESUMEN

PURPOSE: Although the adverse health risks associated with low-dose radiation (LDR) are highly debated, relevant data on neuronal function following chronic LDR exposure are still lacking. MATERIALS AND METHODS: To confirm the effect of chronic LDR on the progression of Alzheimer's disease (AD), we investigated changes in behavior and neuroinflammation after radiation exposure in wild-type (WT) and 5xFAD (TG) mice, an animal model of AD. WT and TG mice, classified by genotyping, were exposed to low-dose-rate radiation for 112 days, with cumulative doses of 0, 0.1, and 0.3 Gy, then evaluated using the open-field and Y-maze behavioral function tests. Changes in the levels of APP processing- and neuroinflammation-related genes were also investigated. RESULTS: No apparent change was evident in either non-spatial memory function or locomotor activity, as examined by the Y-maze and open field tests, respectively. Although chronic LDR did not affect the levels of APP processing, gliosis (Iba1 and GFAP), or inflammatory cytokines (IL-1ß, IL-6, and TNF-α), the levels of IFN-γ were significantly downregulated in TG mice following LDR exposure. In an additional analysis, we examined the genes related to IFN signaling and found that the levels of interferon induced transmembrane protein 3 (IFITM3) were decreased significantly in TG mice following LDR with 0.1 or 0.3 Gy. CONCLUSIONS: Therefore, this study revealed the possibility that LDR could affect the progression of AD, which may be associated with decreased IFN-related signaling, especially IFITM3. Our findings suggest that further studies are required regarding the potential role of LDR in the progression of AD.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Modelos Animales de Enfermedad , Inmunidad Innata , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedades Neuroinflamatorias , Radiación Ionizante
19.
Curr Neuropharmacol ; 21(3): 560-577, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36200159

RESUMEN

Despite being classified as a movement disorder, Parkinson's disease (PD) is characterized by a wide range of non-motor symptoms that significantly affect the patients' quality of life. However, clear evidence-based therapy recommendations for non-motor symptoms of PD are uncommon. Animal models of PD have previously been shown to be useful for advancing the knowledge and treatment of motor symptoms. However, these models may provide insight into and assess therapies for non-motor symptoms in PD. This paper highlights non-motor symptoms in preclinical models of PD and the current position regarding preclinical therapeutic approaches for these non-motor symptoms. This information may be relevant for designing future preclinical investigations of therapies for nonmotor symptoms in PD.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Calidad de Vida
20.
Sci Rep ; 12(1): 22097, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36543843

RESUMEN

The dicentric chromosome assay is the "gold standard" in biodosimetry for estimating radiation exposure. However, its large-scale deployment is limited owing to its time-consuming nature and requirement for expert reviewers. Therefore, a recently developed automated system was evaluated for the dicentric chromosome assay. A previously constructed deep learning-based automatic dose-estimation system (DLADES) was used to construct dose curves and calculate estimated doses. Blood samples from two donors were exposed to cobalt-60 gamma rays (0-4 Gy, 0.8 Gy/min). The DLADES efficiently identified monocentric and dicentric chromosomes but showed impaired recognition of complete cells with 46 chromosomes. We estimated the chromosome number of each "Accepted" sample in the DLADES and sorted similar-quality images by removing outliers using the 1.5IQR method. Eleven of the 12 data points followed Poisson distribution. Blind samples were prepared for each dose to verify the accuracy of the estimated dose generated by the curve. The estimated dose was calculated using Merkle's method. The actual dose for each sample was within the 95% confidence limits of the estimated dose. Sorting similar-quality images using chromosome numbers is crucial for the automated dicentric chromosome assay. We successfully constructed a dose-response curve and determined the estimated dose using the DLADES.


Asunto(s)
Aprendizaje Profundo , Radiometría , Humanos , Radiometría/métodos , Aberraciones Cromosómicas , Rayos gamma , Cromosomas Humanos/genética , Relación Dosis-Respuesta en la Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA