Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Infect Dis ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502709

RESUMEN

On March 22, 2023, the FDA approved rezafungin (REZZAYO) for the treatment of candidemia and invasive candidiasis in adults with limited or no alternative treatment options. Rezafungin is an echinocandin that supports weekly dosing, enabling outpatient parenteral treatment that potentially avoids the need for a central venous catheter. Approval of rezafungin was based on a single adequate and well-controlled phase 3 study designed with a Day 30 all-cause mortality primary endpoint and 20% noninferiority margin, which demonstrated that rezafungin is noninferior to the comparator echinocandin. Nonclinical studies of rezafungin in non-human primates identified a neurotoxicity safety signal; however, rezafungin's safety profile in the completed clinical studies was similar to other FDA-approved echinocandins. Here we describe the rationale for this approval and important considerations during the review process for a flexible development program intended to expedite the availability of antimicrobial therapies to treat serious infections in patients with limited treatment options.

2.
Lab Chip ; 23(15): 3361-3369, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37401915

RESUMEN

Mass spectrometry (MS) enables detection of different chemical species with a very high specificity; however, it can be limited by its throughput. Integrating MS with microfluidics has a tremendous potential to improve throughput and accelerate biochemical research. In this work, we introduce Drop-NIMS, a combination of a passive droplet loading microfluidic device and a matrix-free MS laser desorption ionization technique called nanostructure-initiator mass spectrometry (NIMS). This platform combines different droplets at random to generate a combinatorial library of enzymatic reactions that are deposited directly on the NIMS surface without requiring additional sample handling. The enzyme reaction products are then detected with MS. Drop-NIMS was used to rapidly screen enzymatic reactions containing low (on the order of nL) volumes of glycoside reactants and glycoside hydrolase enzymes per reaction. MS "barcodes" (small compounds with unique masses) were added to the droplets to identify different combinations of substrates and enzymes created by the device. We assigned xylanase activities to several putative glycoside hydrolases, making them relevant to food and biofuel industrial applications. Overall, Drop-NIMS is simple to fabricate, assemble, and operate and it has potential to be used with many other small molecule metabolites.


Asunto(s)
Glicósido Hidrolasas , Nanoestructuras , Espectrometría de Masas/métodos , Glicósido Hidrolasas/metabolismo , Nanoestructuras/química , Dispositivos Laboratorio en un Chip , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
3.
Microsyst Nanoeng ; 8: 31, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359611

RESUMEN

We present a droplet-based microfluidic system that enables CRISPR-based gene editing and high-throughput screening on a chip. The microfluidic device contains a 10 × 10 element array, and each element contains sets of electrodes for two electric field-actuated operations: electrowetting for merging droplets to mix reagents and electroporation for transformation. This device can perform up to 100 genetic modification reactions in parallel, providing a scalable platform for generating the large number of engineered strains required for the combinatorial optimization of genetic pathways and predictable bioengineering. We demonstrate the system's capabilities through the CRISPR-based engineering of two test cases: (1) disruption of the function of the enzyme galactokinase (galK) in E. coli and (2) targeted engineering of the glutamine synthetase gene (glnA) and the blue-pigment synthetase gene (bpsA) to improve indigoidine production in E. coli.

4.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34360661

RESUMEN

Fabricated ecosystems (EcoFABs) offer an innovative approach to in situ examination of microbial establishment patterns around plant roots using nondestructive, high-resolution microscopy. Previously high-resolution imaging was challenging because the roots were not constrained to a fixed distance from the objective. Here, we describe a new 'Imaging EcoFAB' and the use of this device to image the entire root system of growing Brachypodium distachyon at high resolutions (20×, 40×) over a 3-week period. The device is capable of investigating root-microbe interactions of multimember communities. We examined nine strains of Pseudomonas simiae with different fluorescent constructs to B. distachyon and individual cells on root hairs were visible. Succession in the rhizosphere using two different strains of P. simiae was examined, where the second addition was shown to be able to establish in the root tissue. The device was suitable for imaging with different solid media at high magnification, allowing for the imaging of fungal establishment in the rhizosphere. Overall, the Imaging EcoFAB could improve our ability to investigate the spatiotemporal dynamics of the rhizosphere, including studies of fluorescently-tagged, multimember, synthetic communities.


Asunto(s)
Brachypodium/microbiología , Microtecnología/instrumentación , Imagen Molecular/métodos , Raíces de Plantas/microbiología , Pseudomonas/fisiología , Rizosfera , Brachypodium/metabolismo , Raíces de Plantas/metabolismo , Microbiología del Suelo
5.
Biochemistry ; 59(41): 4015-4028, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33021375

RESUMEN

In this report, we compare the femtosecond to nanosecond primary reverse photodynamics (15EPg → 15ZPr) of eight tetrapyrrole binding photoswitching cyanobacteriochromes in the canonical red/green family from the cyanobacterium Nostoc punctiforme. Three characteristic classes were identified on the basis of the diversity of excited-state and ground-state properties, including the lifetime, photocycle initiation quantum yield, photointermediate stability, spectra, and temporal properties. We observed a correlation between the excited-state lifetime and peak wavelength of the electronic absorption spectrum with higher-energy-absorbing representatives exhibiting both faster excited-state decay times and higher photoisomerization quantum yields. The latter was attributed to both an increased number of structural restraints and differences in H-bonding networks that facilitate photoisomerization. All three classes exhibited primary Lumi-Go intermediates, with class II and III representatives evolving to a secondary Meta-G photointermediate. Class II Meta-GR intermediates were orange absorbing, whereas class III Meta-G had structurally relaxed, red-absorbing chromophores that resemble their dark-adapted 15ZPr states. Differences in the reverse and forward reaction mechanisms are discussed within the context of structural constraints.


Asunto(s)
Proteínas Bacterianas/metabolismo , Nostoc/metabolismo , Cinética , Procesos Fotoquímicos , Fotorreceptores Microbianos/metabolismo
6.
Biochemistry ; 58(18): 2297-2306, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30973006

RESUMEN

Cyanobacteriochromes (CBCRs) make up a diverse family of cyanobacterial photoreceptors distantly related to the phytochrome photoreceptors of land plants. At least two lineages of CBCRs have reacquired red-absorbing dark states similar to the phytochrome Pr resting state but are coupled to green-absorbing light-adapted states rather than the canonical far-red-absorbing light-adapted state. One such lineage includes the canonical red/green (R/G) CBCRs that includes AnPixJg2 (UniProtKB Q8YXY7 ) and NpR6012g4 (UniProtKB B2IU14 ) that have been extensively characterized. Here we examine the forward Pr photodynamics of NpR3784 (UniProtKB B2J457 ), a representative member of the second R/G CBCR subfamily. Using broadband transient absorption pump-probe spectroscopy, we characterize both primary (100 fs to 10 ns) and secondary (10 ns to 1 ms) forward (Pr → Pg) photodynamics and compare the results to temperature-jump cryokinetics measurements. Our studies show that primary isomerization dynamics occur on an ∼10 ps timescale, yet remarkably, the red-shifted primary Lumi-Rf photoproduct found in all photoactive canonical R/G CBCRs examined to date is extremely short-lived in NpR3784. These results demonstrate that differences in reaction pathways reflect the evolutionary history of R/G CBCRs despite the convergent evolution of their photocycle end products.


Asunto(s)
Proteínas Bacterianas/metabolismo , Luz , Nostoc/metabolismo , Fotorreceptores Microbianos/metabolismo , Cinética , Nostoc/efectos de la radiación , Procesos Fotoquímicos/efectos de la radiación , Fotorreceptores Microbianos/efectos de la radiación , Espectrofotometría
7.
Biochemistry ; 58(18): 2307-2317, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30977638

RESUMEN

In the companion paper (10.1021/acs.biochem.8b01274), we examined the forward Pr photodynamics of NpR3784 (UniProtKB B2J457 ), a representative member of a noncanonical red/green (R/G) cyanobacteriochrome (CBCR) subfamily. Here the reverse Pg → Pr photodynamics of NpR3784 was studied by broadband transient absorption pump-probe spectroscopy. Primary (100 fs to 10 ns) and secondary (10 ns to 1 ms) photodynamics were characterized over nine decades of time, which also were complemented with temperature-jump cryokinetics measurements. In contrast with canonical R/G CBCRs, the NpR3784 reverse photoconversion yielded two spectrally distinct primary photoproducts, Lumi-Go and Lumi-Gr, which decay on different time scales. The two primary photoproducts of NpR3784 equilibrate on the 40 ns time scale and subsequently propagate as a single intermediate population into Pr. Such heterogeneity could arise from differences in the direction of D-ring rotation, in chromophore protonation or hydrogen bonding, or in the mobility of protein residues or of solvent water nearby the chromophore or some combination therein. We conclude that the atypical photodynamics of NpR3784 reflects chromophore-protein interactions that differ from those present in the canonical R/G CBCR family.


Asunto(s)
Proteínas Bacterianas/metabolismo , Luz , Nostoc/metabolismo , Fotorreceptores Microbianos/metabolismo , Cinética , Nostoc/efectos de la radiación , Procesos Fotoquímicos/efectos de la radiación , Fotorreceptores Microbianos/efectos de la radiación , Espectrofotometría
8.
Nat Biotechnol ; 36(7): 645-650, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29912208

RESUMEN

Oligonucleotides are almost exclusively synthesized using the nucleoside phosphoramidite method, even though it is limited to the direct synthesis of ∼200 mers and produces hazardous waste. Here, we describe an oligonucleotide synthesis strategy that uses the template-independent polymerase terminal deoxynucleotidyl transferase (TdT). Each TdT molecule is conjugated to a single deoxyribonucleoside triphosphate (dNTP) molecule that it can incorporate into a primer. After incorporation of the tethered dNTP, the 3' end of the primer remains covalently bound to TdT and is inaccessible to other TdT-dNTP molecules. Cleaving the linkage between TdT and the incorporated nucleotide releases the primer and allows subsequent extension. We demonstrate that TdT-dNTP conjugates can quantitatively extend a primer by a single nucleotide in 10-20 s, and that the scheme can be iterated to write a defined sequence. This approach may form the basis of an enzymatic oligonucleotide synthesizer.


Asunto(s)
Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Nucleósidos/genética , Oligonucleótidos/genética , ADN Nucleotidilexotransferasa/química , ADN Nucleotidilexotransferasa/genética , ADN Polimerasa Dirigida por ADN/química , Nucleósidos/química , Oligonucleótidos/biosíntesis , Oligonucleótidos/química , Compuestos Organofosforados/química
9.
J Phys Chem Lett ; 8(18): 4498-4503, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28872878

RESUMEN

Iron-sulfur proteins play essential roles in various biological processes. Their electronic structure and vibrational dynamics are key to their rich chemistry but nontrivial to unravel. Here, the first ultrafast transient absorption and impulsive coherent vibrational spectroscopic (ICVS) studies on 2Fe-2S clusters in Rhodobacter capsulatus ferreodoxin VI are characterized. Photoexcitation initiated populations on multiple excited electronic states that evolve into each other in a long-lived charge-transfer state. This suggests a potential light-induced electron-transfer pathway as well as the possibility of using iron-sulfur proteins as photosensitizers for light-dependent enzymes. A tyrosine chain near the active site suggests potential hole-transfer pathways and affirms this electron-transfer pathway. The ICVS data revealed vibrational bands at 417 and 484 cm-1, with the latter attributed to an excited-state mode. The temperature dependence of the ICVS modes suggests that the temperature effect on protein structure or conformational heterogeneities needs to be considered during cryogenic temperature studies.


Asunto(s)
Proteínas Hierro-Azufre/química , Conformación Proteica , Rhodobacter capsulatus/fisiología , Temperatura , Espectroscopía de Resonancia por Spin del Electrón , Ferredoxinas , Guanina/análogos & derivados , Proteínas Hierro-Azufre/fisiología , Oxidación-Reducción , Fotoquímica , Análisis Espectral , Azufre/química , Vibración
10.
Lab Chip ; 17(20): 3388-3400, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28820204

RESUMEN

Synthetic biology is an interdisciplinary field that aims to engineer biological systems for useful purposes. Organism engineering often requires the optimization of individual genes and/or entire biological pathways (consisting of multiple genes). Advances in DNA sequencing and synthesis have recently begun to enable the possibility of evaluating thousands of gene variants and hundreds of thousands of gene combinations. However, such large-scale optimization experiments remain cost-prohibitive to researchers following traditional molecular biology practices, which are frequently labor-intensive and suffer from poor reproducibility. Liquid handling robotics may reduce labor and improve reproducibility, but are themselves expensive and thus inaccessible to most researchers. Microfluidic platforms offer a lower entry price point alternative to robotics, and maintain high throughput and reproducibility while further reducing operating costs through diminished reagent volume requirements. Droplet microfluidics have shown exceptional promise for synthetic biology experiments, including DNA assembly, transformation/transfection, culturing, cell sorting, phenotypic assays, artificial cells and genetic circuits.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Biología Sintética , Células Artificiales , ADN , Diseño de Equipo , Nanopartículas , Nanotecnología
11.
ACS Synth Biol ; 4(10): 1151-64, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26075958

RESUMEN

New microbes are being engineered that contain the genetic circuitry, metabolic pathways, and other cellular functions required for a wide range of applications such as producing biofuels, biobased chemicals, and pharmaceuticals. Although currently available tools are useful in improving the synthetic biology process, further improvements in physical automation would help to lower the barrier of entry into this field. We present an innovative microfluidic platform for assembling DNA fragments with 10× lower volumes (compared to that of current microfluidic platforms) and with integrated region-specific temperature control and on-chip transformation. Integration of these steps minimizes the loss of reagents and products compared to that with conventional methods, which require multiple pipetting steps. For assembling DNA fragments, we implemented three commonly used DNA assembly protocols on our microfluidic device: Golden Gate assembly, Gibson assembly, and yeast assembly (i.e., TAR cloning, DNA Assembler). We demonstrate the utility of these methods by assembling two combinatorial libraries of 16 plasmids each. Each DNA plasmid is transformed into Escherichia coli or Saccharomyces cerevisiae using on-chip electroporation and further sequenced to verify the assembly. We anticipate that this platform will enable new research that can integrate this automated microfluidic platform to generate large combinatorial libraries of plasmids and will help to expedite the overall synthetic biology process.


Asunto(s)
Dispositivos Laboratorio en un Chip , Biología Sintética/instrumentación , ADN/química , ADN/genética
12.
Biochemistry ; 54(4): 1028-42, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25545467

RESUMEN

Phytochromes are red/far-red photosensory proteins that detect the ratio of red to far-red light. Crucial to light regulation of plant developmental biology, phytochromes are also found in fungi, bacteria, and eukaryotic algae. In addition to phytochromes, cyanobacteria also can contain distantly related cyanobacteriochromes (CBCRs) that, like phytochromes, utilize the photoisomerization of a linear tetrapyrrole (bilin) chromophore to convert between two photostates with distinct spectral properties. CBCRs exhibit a wide range of photostates spanning the visible and even near-ultraviolet spectrum. In both phytochromes and CBCRs, biosynthesis initially yields a holoprotein with bilin in the 15Z configuration, and the 15E photoproduct can often revert to the 15Z photostate in the absence of light (dark reversion). One CBCR subfamily, red/green CBCRs, typically exhibits red-absorbing dark states and green-absorbing photoproducts. Dark reversion is extremely variable in red/green CBCRs with known examples ranging from seconds to days. One red/green CBCR, NpR6012g4 from Nostoc punctiforme, is also known to exhibit forward photoconversion that has an unusually high quantum yield at ∼40% compared to 10-20% for phytochromes and CBCRs from other subfamilies. In the current study, we use time-resolved pump-probe absorption spectroscopy with broadband detection and multicomponent global analysis to characterize forward photoconversion of seven additional red/green CBCRs from N. punctiforme on an ultrafast time scale. Our results reveal that red/green CBCRs exhibit a conserved pathway for primary forward photoconversion but that considerable diversity exists in their excited-state lifetimes, photochemical quantum yields, and primary photoproduct stabilities.


Asunto(s)
Proteínas Bacterianas/fisiología , Cianobacterias/fisiología , Estimulación Luminosa , Fotorreceptores Microbianos/fisiología , Fitocromo/fisiología , Proteínas Bacterianas/química , Estimulación Luminosa/métodos , Fitocromo/química
13.
Biochemistry ; 53(28): 4601-11, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24940993

RESUMEN

Femtosecond photodynamics of the Pfr form of the red/far-red phytochrome N-terminal PAS-GAF-PHY photosensory core module of the cyanobacterial phytochrome Cph1 (termed Cph1Δ) from Synechocystis were resolved with visible broadband transient absorption spectroscopy. Multiphasic generation dynamics via global target analysis revealed parallel evolution of two pathways with distinct excited- and ground-state kinetics. These measurements resolved two subpopulations: a majority subpopulation with fast excited-state decay and slower ground-state dynamics, corresponding to previous descriptions of Pfr dynamics, and a minority subpopulation with slower excited-state decay and faster ground-state primary dynamics. Both excited-state subpopulations generated the isomerized, red-shifted Lumi-Ff photoproduct (715 nm); subsequent ground-state evolution to a blue-shifted Meta-Fr population (635 nm) proceeded on 3 ps and 1.5 ns time scales for the two subpopulations. Meta-Fr was spectrally similar to a recently described photoinactive fluorescent subpopulation of Pr ((Fluor)Pr). Thus, the reverse Pfr to Pr photoconversion of Cph1Δ involves minor structural deformation of Meta-Fr to generate the fluorescent, photochemically refractory form of Pr, with slower subsequent equilibration with the photoactive Pr subpopulation ((Photo)Pr).


Asunto(s)
Proteínas Bacterianas/química , Simulación de Dinámica Molecular , Procesos Fotoquímicos , Fitocromo/química , Proteínas Quinasas/química , Synechocystis/enzimología , Fotorreceptores Microbianos
14.
Biochemistry ; 53(17): 2818-26, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24742290

RESUMEN

Phytochromes are widespread red/far-red photosensory proteins well known as critical regulators of photomorphogenesis in plants. It is often assumed that natural selection would have optimized the light sensing efficiency of phytochromes to minimize nonproductive photochemical deexcitation pathways. Surprisingly, the quantum efficiency for the forward Pr-to-Pfr photoconversion of phytochromes seldom exceeds 15%, a value very much lower than that of animal rhodopsins. Exploiting ultrafast excitation wavelength- and temperature-dependent transient absorption spectroscopy, we resolve multiple pathways within the ultrafast photodynamics of the N-terminal PAS-GAF-PHY photosensory core module of cyanobacterial phytochrome Cph1 (termed Cph1Δ) that are primarily responsible for the overall low quantum efficiency. This inhomogeneity primarily reflects a long-lived fluorescent subpopulation that exists in equilibrium with a spectrally distinct, photoactive subpopulation. The fluorescent subpopulation is favored at elevated temperatures, resulting in anomalous excited-state dynamics (slower kinetics at higher temperatures). The spectral and kinetic behavior of the fluorescent subpopulation strongly resembles that of the photochemically compromised and highly fluorescent Y176H variant of Cph1Δ. We present an integrated, heterogeneous model for Cph1Δ that is based on the observed transient and static spectroscopic signals. Understanding the molecular basis for this dynamic inhomogeneity holds potential for rational design of efficient phytochrome-based fluorescent and photoswitchable probes.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Fitocromo/química , Fitocromo/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/efectos de la radiación , Cinética , Luz , Fotoquímica , Fotorreceptores Microbianos , Fitocromo/genética , Fitocromo/efectos de la radiación , Proteínas Quinasas/genética , Proteínas Quinasas/efectos de la radiación , Espectrometría de Fluorescencia , Análisis Espectral , Synechocystis/metabolismo
15.
Biochemistry ; 53(6): 1029-40, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24437620

RESUMEN

Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors distantly related to phytochromes. Like phytochromes, CBCRs photointerconvert between two photostates that accompany photoisomerization of their bilin chromophores. While phytochromes typically exhibit red/far-red photocycles, CBCR photocycles are much more diverse, spanning the near-ultraviolet and the entire visible region. All CBCRs described to date have a conserved Cys residue covalently attached to the linear tetrapyrrole (bilin) chromophore; two CBCR subfamilies also exploit a second thioether linkage to the chromophore for detection of near-ultraviolet to blue light. Here, we present the photodynamic analysis of the insert-Cys CBCR NpF2164g3, a representative of the second class of two-cysteine CBCRs. Using broadband transient absorption pump-probe spectroscopy, we characterize the primary (100 fs to 10 ns) and secondary (10 ns to 1 ms) photodynamics in both directions, examining photodynamics over nine decades of time. Primary isomerization dynamics occur on a ~10 ps time scale for both forward and reverse reactions. In contrast to previous studies on Tlr0924, a representative of the other class of two-cysteine CBCRs, formation and elimination of the second linkage are slower than the 1 ms experimental range probed here. These results extend our understanding of dual-cysteine CBCR photocycles in the phytochrome superfamily.


Asunto(s)
Proteínas Bacterianas/química , Cisteína/química , Fotorreceptores Microbianos/química , Fitocromo/química , Color , Cinética , Nostoc/metabolismo , Procesos Fotoquímicos
16.
Biochemistry ; 52(46): 8198-208, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24147541

RESUMEN

Phytochromes are red/far-red photosensory proteins that utilize the photoisomerization of a linear tetrapyrrole (bilin) chromophore to detect the red to far-red light ratio. Cyanobacteriochromes (CBCRs) are distantly related cyanobacterial photosensors with homologous bilin-binding GAF domains, but they exhibit greater spectral diversity. Different CBCR subfamilies have been described, with spectral sensitivity varying across the near-ultraviolet and throughout the visible spectrum, but all known CBCRs utilize photoisomerization of the bilin 15,16-double bond as the primary photochemical event. The first CBCR discovered was RcaE, responsible for tuning light harvesting to the incident color environment (complementary chromatic adaptation) in Fremyella diplosiphon. The green/red RcaE photocycle has recently been described in detail. We now extend this analysis by examining femtosecond photodynamics using ultrafast transient absorption techniques with broadband detection and multicomponent global analysis. Excited-state dynamics in both directions are significantly slower than those recently published for the red/green CBCR NpR6012g4. In the forward reaction, the primary Lumi-G photoproduct arises from the longer-lived excited-state populations, leading to a low photoproduct quantum yield. Using dual-excitation wavelength interleaved pump-probe spectroscopy, we observe multiphasic excited-state dynamics in the forward reaction ((15Z)Pg → (15E)Pr), which we interpret as arising from ground-state inhomogeneity with different tautomers of the PCB chromophore. The reverse reaction ((15E)Pr → (15Z)Pg) is characterized via pump-probe spectroscopy and also exhibits slow excited-state decay dynamics and a low photoproduct yield. These results provide the first description of excited-state dynamics for a green/red CBCR.


Asunto(s)
Fotorreceptores Microbianos/química , Fitocromo/química , Pigmentos Biliares/química , Color , Cianobacterias/metabolismo , Cinética , Procesos Fotoquímicos , Análisis Espectral
17.
J Phys Chem Lett ; 4(16): 2605-2609, 2013 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-24143267

RESUMEN

The ultrafast mechanisms underlying the initial photoisomerization (Pr → Lumi-R) in the forward reaction of the cyanobacterial photoreceptor Cph1 were explored with multipulse pump-dump-probe transient spectroscopy. A recently postulated multi-population model was used to fit the transient pump-dump-probe and dump-induced depletion signals. We observed dump-induced depletion of the Lumi-R photoproduct, demonstrating that photoisomerization occurs via evolution on both the excited- and ground-state electronic surfaces. Excited-state equilibrium was not observed, as shown via the absence of a dump-induced excited-state "Le Châtelier redistribution" of excited-state populations. The importance of incorporating the inhomogeneous dynamics of Cph1 in interpreting measured transient data is discussed.

18.
J Phys Chem B ; 117(38): 11229-38, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-23725062

RESUMEN

Recent characterization of the red/green cyanobacteriochrome (CBCR) NpR6012g4 revealed a high quantum yield for its forward photoreaction [J. Am. Chem. Soc. 2012, 134, 130-133] that was ascribed to the activity of hidden, productive ground-state intermediates. The dynamics of the pathways involving these ground-state intermediates was resolved with femtosecond dispersed pump-dump-probe spectroscopy, the first such study reported for any CBCR. To address the ubiquity of such second-chance initiation dynamics (SCID) in CBCRs, we examined the closely related red/green CBCR NpF2164g6 from Nostoc punctiforme. Both NpF2164g6 and NpR6012g4 use phycocyanobilin as the chromophore precursor and exhibit similar excited-state dynamics. However, NpF2164g6 exhibits a lower quantum yield of 32% for the generation of the isomerized Lumi-R primary photoproduct, compared to 40% for NpR6012g4. This difference arises from significantly different ground-state dynamics between the two proteins, with the SCID mechanism deactivated in NpF2164g6. We present an integrated inhomogeneous target model that self-consistently fits the pump-probe and pump-dump-probe signals for both forward and reverse photoreactions in both proteins. This work demonstrates that reactive ground-state intermediates are not ubiquitous phenomena in CBCRs.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cinética , Nostoc/metabolismo , Ficobilinas/química , Ficocianina/química , Teoría Cuántica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
19.
Clin Immunol ; 145(1): 77-81, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22940634

RESUMEN

Deficiency of the IL-1 receptor antagonist (DIRA) is a recently described rare autoinflammatory disease, caused by loss of function mutations in IL1RN leading to the unopposed activation of the IL-1 pathway. We describe a novel nonsense mutation in the IL1RN gene, associated with early intrauterine onset, death and multiorgan involvement in a prematurely born baby. The protein prediction model indicated that the novel Q119X mutation would result in a nonfunctional protein by impairing the ability of the IL-1Ra to bind and antagonize signaling through the IL-1R. Since the disorder may mimic severe bacterial infections and the treatment with anakinra is life saving, we intend to raise awareness of the syndrome and the possibility of a founder mutation that may lead to the diagnosis of additional cases in Turkey. The clinical suspicion of DIRA is critical to avoid improper management of the patients with antibiotics alone and death from multiorgan failure.


Asunto(s)
Síndromes de Inmunodeficiencia/genética , Proteína Antagonista del Receptor de Interleucina 1/deficiencia , Proteína Antagonista del Receptor de Interleucina 1/genética , Mutación/inmunología , Consanguinidad , Resultado Fatal , Femenino , Muerte Fetal , Humanos , Síndromes de Inmunodeficiencia/inmunología , Recién Nacido , Proteína Antagonista del Receptor de Interleucina 1/inmunología , Interleucina-1alfa/inmunología , Interleucina-1alfa/metabolismo , Masculino , Modelos Moleculares , Receptores de Interleucina-1/inmunología , Receptores de Interleucina-1/metabolismo , Hermanos , Transducción de Señal/genética , Transducción de Señal/inmunología , Turquía
20.
J Phys Chem B ; 116(35): 10571-81, 2012 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-22721495

RESUMEN

Cyanobacteriochromes (CBCRs) are diverse biliprotein photosensors distantly related to the red/far-red photoreceptors of the phytochrome family. There are several subfamilies of CBCRs, displaying varied spectral responses spanning the entire visible region. Tlr0924 belongs to the DXCF subfamily that utilizes the Cys residue in a conserved Asp-Xaa-Cys-Phe (DXCF) motif to form a second covalent linkage to the chromophore, resulting in a blue-absorbing dark state. Photoconversion leads to elimination of this linkage, resulting in a green-absorbing photoproduct. Tlr0924 initially incorporates phycocyanobilin (PCB) as a chromophore, exhibiting a blue/orange photocycle, but slowly isomerizes PCB to phycoviolobilin (PVB) to yield a blue/green photocycle. Ultrafast transient absorption spectroscopy was used to study both forward and reverse reaction photodynamics of the recombinant GAF domain of Tlr0924. Primary photoproducts were identified, as were subsequent intermediates at 1 ms. PCB and PVB population photodynamics were decomposed using global target analysis. PCB and PVB populations exhibit similar and parallel photocycles in Tlr0924, but the PVB population exhibits faster excited-state decay in both reaction directions. On the basis of longer time analysis, we show that the photochemical coordinate (15,16-isomerization) and second-linkage coordinate (elimination or bond formation at C10) are separate processes in both directions.


Asunto(s)
Fotorreceptores Microbianos/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Isomerismo , Cinética , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Ficobilinas/química , Ficocianina/química , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA