Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Regen Ther ; 26: 564-570, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39228904

RESUMEN

Introduction: While the provision of unapproved regenerative medicine has been problematic worldwide, few studies have examined the implementation status of regenerative medicine (RM) in the specific field. This study aimed to determine the current status of therapy and clinical research in the obstetrics and gynecology (OBGYN) in Japan under the Act on the Safety of Regenerative Medicine (RM Act). Methods: Detailed data were extracted from publicly available websites provided by the Ministry of Health, Labour, and Welfare. We extracted descriptive details, including risk classification of the RM Act, modality, target disease, locality, institution, and administration route. For therapy, the price for each modality was evaluated. Results: The total number of therapeutic provision plans in OBGYN (1.9% of RM in Japan) are classified as Class II (moderate) risk. Most were administered in clinics in urban areas for treating endometrial or ovarian infertility by locally administering platelet-rich plasma (PRP) or autologous mesenchymal stem cells (MSCs). The price using MSCs is approximately eight times more expensive that of those involving PRP (1832.1 ± 1139.8 vs 240.8 ± 106.5 thousand yen, p < 0.0001). Regarding research, four plans (2.2%) were submitted to target implantation failure and advanced gynecological cancer using autologous lymphocytes, dendritic cells, or MSCs. Conclusion: The RM Act permits knowledge of the current status of regenerative medicine even for unapproved uses in a specific clinical field. The study findings shall prompt a worldwide discussion regarding the required regulations for therapy and clinical research of RM.

2.
ACS Appl Mater Interfaces ; 16(31): 40682-40694, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39046105

RESUMEN

We propose a hydrogel immobilized with manganese porphyrin (MnP), a biomimetic superoxide dismutase (SOD), and catalase (CAT) to modulate reactive oxygen species (ROS) and hypoxia that impede the repair of large bone defects. Our hydrogel synthesis involved thiolated chitosan and polyethylene glycol-maleimide conjugated with MnPs (MnP-PEG-MAL), which enabled in situ gelation via a click reaction. Through optimization, a hydrogel with mechanical properties and catalytic effects favorable for bone repair was selected. Additionally, the hydrogel was incorporated with risedronate to induce synergistic effects of ROS scavenging, O2 generation, and sustained drug release. In vitro studies demonstrated enhanced proliferation and differentiation of MG-63 cells and suppressed proliferation and differentiation of RAW 264.7 cells in ROS-rich environments. In vivo evaluation of a calvarial bone defect model revealed that this multifunctional hydrogel facilitated significant bone regeneration. Therefore, the hydrogel proposed in this study is a promising strategy for addressing complex wound environments and promoting effective bone healing.


Asunto(s)
Hidrogeles , Especies Reactivas de Oxígeno , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Células RAW 264.7 , Hidrogeles/química , Hidrogeles/farmacología , Hidrogeles/síntesis química , Humanos , Oxígeno/química , Oxígeno/metabolismo , Porfirinas/química , Porfirinas/farmacología , Proliferación Celular/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Manganeso/química , Manganeso/farmacología , Diferenciación Celular/efectos de los fármacos , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Superóxido Dismutasa/metabolismo
3.
Biomed Eng Lett ; 14(3): 439-450, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38645594

RESUMEN

Purpose: Transscleral ocular iontophoresis has been proposed to deliver charged particulate drugs to ocular tissues effectively by transmitting a weak electrical current through the sclera. The electric fields formed are influenced by the electrode conditions, thus affecting the amount of particulate drugs delivered to the ocular tissues via iontophoresis. Computational simulation is widely used to simulate drug concentrations in the eye; therefore, reflecting the characteristics of the drugs in living tissues to the simulations is important for a more precise estimation of drug concentration. In this study, we investigated the effect of electrode conditions (location and size) on the efficacy of transscleral iontophoresis. Methods: We first determined the simulation parameters based on the comparison of the amount of drug in the sclera in the simulation and in vivo experimental results. The injection of the negatively charged nanoparticles into the cul-de-sac of the lower eyelid was simulated. The active electrode (cathode) was attached to the skin immediately above the injection site, while the return electrode (anode) was placed over the eyebrow. The drug concentration distribution in the eye, based on either the location or size of each electrode, was evaluated using the finite element method with the estimated simulation parameters. Results: Our results indicate that drug permeability varies depending on the location and the size of the electrodes. Conclusion: Our findings demonstrate that the determination of optimal electrode conditions is necessary to enhance the effectiveness of transscleral iontophoresis. Supplementary Information: The online version contains supplementary material available at 10.1007/s13534-024-00359-2.

4.
Molecules ; 29(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38675621

RESUMEN

Allogeneic hematopoietic cell transplantation (allo-HCT) is a highly effective, well-established treatment for patients with various hematologic malignancies and non-malignant diseases. The therapeutic benefits of allo-HCT are mediated by alloreactive T cells in donor grafts. However, there is a significant risk of graft-versus-host disease (GvHD), in which the donor T cells recognize recipient cells as foreign and attack healthy organs in addition to malignancies. We previously demonstrated that targeting JAK1/JAK2, mediators of interferon-gamma receptor (IFNGR) and IL-6 receptor signaling, in donor T cells using baricitinib and ruxolitinib results in a significant reduction in GvHD after allo-HCT. Furthermore, we showed that balanced inhibition of JAK1/JAK2 while sparing JAK3 is important for the optimal prevention of GvHD. Thus, we have generated novel JAK1/JAK2 inhibitors, termed WU derivatives, by modifying baricitinib. Our results show that WU derivatives have the potential to mitigate GvHD by upregulating regulatory T cells and immune reconstitution while reducing the frequencies of antigen-presenting cells (APCs) and CD80 expression on these APCs in our preclinical mouse model of allo-HCT. In addition, WU derivatives effectively downregulated CXCR3 and T-bet in primary murine T cells. In summary, we have generated novel JAK inhibitors that could serve as alternatives to baricitinib or ruxolitinib.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Pirazoles , Trasplante Homólogo , Animales , Ratones , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/efectos de los fármacos , Células Presentadoras de Antígenos/metabolismo , Azetidinas/farmacología , Modelos Animales de Enfermedad , Enfermedad Injerto contra Huésped/prevención & control , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Janus Quinasa 1/antagonistas & inhibidores , Janus Quinasa 1/metabolismo , Janus Quinasa 2/metabolismo , Janus Quinasa 2/antagonistas & inhibidores , Inhibidores de las Cinasas Janus/farmacología , Ratones Endogámicos C57BL , Purinas/farmacología , Pirazoles/farmacología , Sulfonamidas/farmacología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos
5.
ACS Appl Mater Interfaces ; 16(12): 14583-14594, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38478505

RESUMEN

Healing chronic diabetic wounds is challenging because of excessive reactive oxygen species (ROS) and hypoxia in the wound microenvironment. To address this issue, we propose a hydrogel wound dressing composed of polyethylene glycol (PEG) cross-linked with a biomimetic catalase, Fe-containing porphyrin (FeP) (i.e., FeP hydrogel). The immobilized FeP can serve as a catalyst for both ROS scavenging and O2 generation. The properties of the hydrogels were optimized by varying the composition ratios of the two constituent materials based on their mechanical properties and catalytic activity. Our in vitro cell experiments revealed that the FeP-80 hydrogel enhanced the proliferation and migration of keratinocytes and dermal fibroblasts and promoted the expression of angiogenic growth factors in keratinocytes. When tested with an in vivo diabetic chronic wound model, the FeP-80 hydrogel promoted wound healing by facilitating re-epithelialization, promoting angiogenesis, and suppressing inflammation, compared with other control groups.


Asunto(s)
Diabetes Mellitus , Hidrogeles , Humanos , Hidrogeles/farmacología , Especies Reactivas de Oxígeno/metabolismo , Oxígeno , Cicatrización de Heridas , Antibacterianos
6.
Biomater Res ; 28: 0008, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532906

RESUMEN

Background: Cancer recurrence and metastasis are major contributors to treatment failure following tumor resection surgery. We developed a novel implantable drug delivery system utilizing glycol chitosan to address these issues. Glycol chitosan is a natural adjuvant, inducing dendritic cell activation to promote T helper 1 cell immune responses, macrophage activation, and cytokine production. Effective antigen production by dendritic cells initiates T-cell-mediated immune responses, aiding tumor growth control. Methods: In this study, we fabricated multifunctional methacrylated glycol chitosan (MGC) hydrogels with extended release of DNA/doxorubicin (DOX) complex for cancer immunotherapy. We constructed the resection model of breast cancer to verify the anticancer effects of MGC hydrogel with DNA/DOX complex. Results: This study demonstrated the potential of MGC hydrogel with extended release of DNA/DOX complex for local and efficient cancer therapy. The MGC hydrogel was implanted directly into the surgical site after tumor resection, activating tumor-related immune cells both locally and over a prolonged period of time through immune-reactive molecules. Conclusions: The MGC hydrogel effectively suppressed tumor recurrence and metastasis while enhancing immunotherapeutic efficacy and minimizing side effects. This biomaterial-based drug delivery system, combined with cancer immunotherapy, can substantial improve treatment outcomes and patient prognosis.

7.
Nano Converg ; 11(1): 6, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332364

RESUMEN

Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a family of chronic disorders along the gastrointestinal tract. Because of its idiopathic nature, IBD does not have a fundamental cure; current available therapies for IBD are limited to prolonged doses of immunomodulatory agents. While these treatments may reduce inflammation, limited therapeutic efficacy, inconsistency across patients, and adverse side effects from aggressive medications remain as major drawbacks. Recently, excessive production and accumulation of neutrophil extracellular traps (NETs) also known as NETosis have been identified to exacerbate inflammatory responses and induce further tissue damage in IBD. Such discovery invited many researchers to investigate NETs as a potential therapeutic target. DNase-I is a natural agent that can effectively destroy NETs and, therefore, potentially reduce NETs-induced inflammations even without the use of aggressive drugs. However, low stability and rapid clearance of DNase-I remain as major limitations for further therapeutic applications. In this research, polymeric nanozymes were fabricated to increase the delivery and therapeutic efficacy of DNase-I. DNase-I was immobilized on the surface of polymeric nanoparticles to maintain its enzymatic properties while extending its activity in the colon. Delivery of DNase-I using this platform allowed enhanced stability and prolonged activity of DNase-I with minimal toxicity. When administered to animal models of IBD, DNase-I nanozymes successfully alleviated various pathophysiological symptoms of IBD. More importantly, DNase-I nanozyme administration successfully attenuated neutrophil infiltration and NETosis in the colon compared to free DNase-I or mesalamine.

8.
J Allergy Clin Immunol ; 153(3): 705-717.e11, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38000697

RESUMEN

BACKGROUND: Neutrophil extracellular traps (NETs) are observed in chronic rhinosinusitis (CRS), although their role remains unclear. OBJECTIVES: This study aimed to investigate the influence of NETs on the CRS epithelium. METHODS: Forty-five sinonasal biopsy specimens were immunofluorescence-stained to identify NETs and p63+ basal stem cells. Investigators treated human nasal epithelial cells with NETs and studied them with immunofluorescence staining, Western blotting, and quantitative real-time PCR. NET inhibitors were administered to a murine neutrophilic nasal polyp model. RESULTS: NETs existed in tissues in patients with CRS with nasal polyps, especially in noneosinophilic nasal polyp tissues. p63+ basal cell expression had a positive correlation with the release of NETs. NETs induced the expansion of Ki-67+p63+ cells. We found that ΔNp63, an isoform of p63, was mainly expressed in the nasal epithelium and controlled by NETs. Treatment with deoxyribonuclease (DNase) I or Sivelestat (NET inhibitors) prevented the overexpression of ΔNp63+ epithelial stem cells and reduced polyp formation. CONCLUSIONS: These results reveal that NETs are implicated in CRS pathogenesis via basal cell hyperplasia. This study suggests a novel possibility of treating CRS by targeting NETs.


Asunto(s)
Trampas Extracelulares , Pólipos Nasales , Rinitis , Rinosinusitis , Sinusitis , Humanos , Animales , Ratones , Rinitis/patología , Pólipos Nasales/patología , Hiperplasia/patología , Sinusitis/patología , Mucosa Nasal/patología , Enfermedad Crónica
9.
Small ; : e2304862, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38050931

RESUMEN

Atopic dermatitis (AD) is a widespread, recurrent, and chronic inflammatory skin condition that imposes a major burden on patients. Conventional treatments, such as corticosteroids, are associated with various side effects, underscoring the need for innovative therapeutic approaches. In this study, the possibility of using indole-3-acetic acid-loaded layered double hydroxides (IAA-LDHs) is evaluated as a novel treatment for AD. IAA is an auxin-class plant hormone with antioxidant and anti-inflammatory effects. Following the synthesis of IAA-LDH nanohybrids, their ability to induce M2-like macrophage polarization in macrophages obtained from mouse bone marrow is assessed. The antioxidant activity of IAA-LDH is quantified by assessing the decrease in intracellular reactive oxygen species levels. The anti-inflammatory and anti-atopic characteristics of IAA-LDH are evaluated in a mouse model of AD by examining the cutaneous tissues, immunological organs, and cells. The findings suggest that IAA-LDH has great therapeutic potential as a candidate for AD treatment based on its in vitro and in vivo modulation of AD immunology, enhancement of macrophage polarization, and antioxidant activity. This inorganic drug delivery technology represents a promising new avenue for the development of safe and effective AD treatments.

10.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37686186

RESUMEN

S100A8 and S100A9 are multifunctional proteins that can initiate various signaling pathways and modulate cell function both inside and outside immune cells, depending on their receptors, mediators, and molecular environment. They have been reported as dysregulated genes and proteins in a wide range of cancers, including hematologic malignancies, from diagnosis to response to therapy. The role of S100A8 and S100A9 in hematologic malignancies is highlighted due to their ability to work together or as antagonists to modify cell phenotype, including viability, differentiation, chemosensitivity, trafficking, and transcription strategies, which can lead to an oncogenic phase or reduced symptoms. In this review article, we discuss the critical roles of S100A8, S100A9, and calprotectin (heterodimer or heterotetramer forms of S100A8 and S100A9) in forming and promoting the malignant bone marrow microenvironment. We also focus on their potential roles as biomarkers and therapeutic targets in various stages of hematologic malignancies from diagnosis to treatment.


Asunto(s)
Calgranulina A , Calgranulina B , Neoplasias Hematológicas , Humanos , Diferenciación Celular , Neoplasias Hematológicas/tratamiento farmacológico , Complejo de Antígeno L1 de Leucocito , Microambiente Tumoral
11.
Front Immunol ; 14: 1264496, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744381

RESUMEN

Solid organ transplant represents a potentially lifesaving procedure for patients suffering from end-stage heart, lung, liver, and kidney failure. However, rejection remains a significant source of morbidity and immunosuppressive medications have significant toxicities. Janus kinase (JAK) inhibitors are effective immunosuppressants in autoimmune diseases and graft versus host disease after allogeneic hematopoietic cell transplantation. Here we examine the role of JAK inhibition in preclinical fully major histocompatibility mismatched skin and heart allograft models. Baricitinib combined with cyclosporine A (CsA) preserved fully major histocompatibility mismatched skin grafts for the entirety of a 111-day experimental period. In baricitinib plus CsA treated mice, circulating CD4+T-bet+ T cells, CD8+T-bet+ T cells, and CD4+FOXP3+ regulatory T cells were reduced. Single cell RNA sequencing revealed a unique expression profile in immune cells in the skin of baricitinib plus CsA treated mice, including decreased inflammatory neutrophils and increased CCR2- macrophages. In a fully major histocompatibility mismatched mismatched heart allograft model, baricitinib plus CsA prevented graft rejection for the entire 28-day treatment period compared with 9 days in controls. Our findings establish that the combination of baricitinib and CsA prevents rejection in allogeneic skin and heart graft models and supports the study of JAK inhibitors in human solid organ transplantation.


Asunto(s)
Ciclosporina , Trasplante de Corazón , Humanos , Animales , Ratones , Ciclosporina/uso terapéutico , Rechazo de Injerto/prevención & control , Trasplante de Corazón/efectos adversos , Sulfonamidas
12.
Biosens Bioelectron ; 238: 115571, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37562343

RESUMEN

A microneedle (MN) sensor coated with a sensing composite material was proposed for measuring glucose concentrations in interstitial fluid (ISF). The sensing composite material was prepared by blending a polymer containing glucose-responsive phenylboronic acid (PBA) moieties (i.e., polystyrene-block-poly(acrylic acid-co-acrylamidophenylboronic acid)) with conductive carbon nanotubes (CNTs). The polymer exhibited reversible swelling behavior in response to glucose concentrations, which influenced the distribution of the embedded CNTs, resulting in sensitive variations in electrical percolation, even when coated onto a confined surface of the MN in the sensor. We varied the ratio of PBA moieties and the loading amount of CNTs in the sensing composite material of the MN sensor and tested them in vitro using an ISF-mimicking gel with physiological glucose concentrations to determine the optimal sensitivity conditions. When tested in animal models with varying blood glucose concentrations, the MN sensor coated with the selected sensing material exhibited a strong correlation between the measured electrical currents and blood glucose concentrations, showing accuracy comparable to that of a glucometer in clinical use.


Asunto(s)
Técnicas Biosensibles , Nanotubos de Carbono , Animales , Polímeros , Glucemia , Líquido Extracelular , Técnicas Biosensibles/métodos , Glucosa
13.
Nano Converg ; 10(1): 36, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550567

RESUMEN

Cancer immunotherapy, which harnesses the power of the immune system, has shown immense promise in the fight against malignancies. Messenger RNA (mRNA) stands as a versatile instrument in this context, with its capacity to encode tumor-associated antigens (TAAs), immune cell receptors, cytokines, and antibodies. Nevertheless, the inherent structural instability of mRNA requires the development of effective delivery systems. Lipid nanoparticles (LNPs) have emerged as significant candidates for mRNA delivery in cancer immunotherapy, providing both protection to the mRNA and enhanced intracellular delivery efficiency. In this review, we offer a comprehensive summary of the recent advancements in LNP-based mRNA delivery systems, with a focus on strategies for optimizing the design and delivery of mRNA-encoded therapeutics in cancer treatment. Furthermore, we delve into the challenges encountered in this field and contemplate future perspectives, aiming to improve the safety and efficacy of LNP-based mRNA cancer immunotherapies.

14.
Bioeng Transl Med ; 8(3): e10477, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37206221

RESUMEN

Chemodynamic therapy (CDT) is based on the production of cytotoxic reactive oxygen species, such as hydroxyl radicals (•OH). Thus, CDT can be advantageous when it is cancer-specific, in terms of efficacy and safety. Therefore, we propose NH2-MIL-101(Fe), a Fe-containing metal-organic framework (MOF), as a carrier of Cu (copper)-chelating agent, d-penicillamine (d-pen; i.e., the NH2-MIL-101(Fe)/d-pen), as well as a catalyst with Fe-metal clusters for Fenton reaction. NH2-MIL-101(Fe)/d-pen in the form of nanoparticles was efficiently taken into cancer cells and released d-pen in a sustained manner. The released d-pen chelated Cu that is highly expressed in cancer environments and this produces extra H2O2, which is then decomposed by Fe in NH2-MIL-101(Fe) to generate •OH. Therefore, the cytotoxicity of NH2-MIL-101(Fe)/d-pen was observed in cancer cells, not in normal cells. We also suggest a formulation of NH2-MIL-101(Fe)/d-pen combined with NH2-MIL-101(Fe) loaded with the chemotherapeutic drug, irinotecan (CPT-11; NH2-MIL-101(Fe)/CPT-11). When intratumorally injected into tumor-bearing mice in vivo, this combined formulation exhibited the most prominent anticancer effects among all tested formulations, owing to the synergistic effect of CDT and chemotherapy.

15.
Bioeng Transl Med ; 8(3): e10479, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37206225

RESUMEN

Prompt administration of first-aid drugs can save lives during medical emergencies such as anaphylaxis and hypoglycemia. However, this is often performed by needle self-injection, which is not easy for patients under emergency conditions. Therefore, we propose an implantable device capable of on-demand administration of first-aid drugs (i.e., the implantable device with a magnetically rotating disk [iMRD]), such as epinephrine and glucagon, via a noninvasive simple application of the magnet from the outside skin (i.e., the external magnet). The iMRD contained a disk embedded with a magnet, as well as multiple drug reservoirs that were sealed with a membrane, which was designed to rotate at a precise angle only when the external magnet was applied. During this rotation, the membrane on a designated single-drug reservoir was aligned and torn to expose the drug to the outside. When implanted in living animals, the iMRD, actuated by an external magnet, delivers epinephrine and glucagon, similar to conventional subcutaneous needle injections.

16.
Small ; 19(39): e2302023, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37246275

RESUMEN

Deoxyribonuclease-I (DNase-I), a representative endonuclease, is an important biomarker for the diagnosis of infectious diseases and cancer progression. However, enzymatic activity decreases rapidly ex vivo, which highlights the need for precise on-site detection of DNase-I. Here, a localized surface plasmon resonance (LSPR) biosensor that enables the simple and rapid detection of DNase-I is reported. Moreover, a novel technique named electrochemical deposition and mild thermal annealing (EDMIT) is applied to overcome signal variations. By taking advantage of the low adhesion of gold clusters on indium tin oxide substrates, both the uniformity and sphericity of gold nanoparticles are increased under mild thermal annealing conditions via coalescence and Ostwald ripening. This ultimately results in an approximately 15-fold decrease in LSPR signal variations. The linear range of the fabricated sensor is 20-1000 ng mL-1 with a limit of detection (LOD) of 127.25 pg mL-1 , as demonstrated by spectral absorbance analyses. The fabricated LSPR sensor stably measured DNase-I concentrations from samples collected from both an inflammatory bowel disease (IBD) mouse model, as well as human patients with severe COVID-19 symptoms. Therefore, the proposed LSPR sensor fabricated via the EDMIT method can be used for early diagnosis of other infectious diseases.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Nanopartículas del Metal , Animales , Ratones , Humanos , Resonancia por Plasmón de Superficie/métodos , Oro/química , Nanopartículas del Metal/química , Técnicas Biosensibles/métodos , Desoxirribonucleasas
18.
Tissue Eng Regen Med ; 20(3): 371-387, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36867402

RESUMEN

Adoptive cell therapy with chimeric antigen receptor (CAR)-engineered T cells (CAR-Ts) has emerged as an innovative immunotherapy for hematological cancer treatment. However, the limited effect on solid tumors, complex processes, and excessive manufacturing costs remain as limitations of CAR-T therapy. Nanotechnology provides an alternative to the conventional CAR-T therapy. Owing to their unique physicochemical properties, nanoparticles can not only serve as a delivery platform for drugs but also target specific cells. Nanoparticle-based CAR therapy can be applied not only to T cells but also to CAR-natural killer and CAR-macrophage, compensating for some of their limitations. This review focuses on the introduction of nanoparticle-based advanced CAR immune cell therapy and future perspectives on immune cell reprogramming.


Asunto(s)
Nanopartículas , Neoplasias , Receptores Quiméricos de Antígenos , Inmunoterapia Adoptiva , Receptores de Antígenos de Linfocitos T , Inmunoterapia , Neoplasias/terapia
19.
Biomater Res ; 27(1): 5, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36721212

RESUMEN

The tumor microenvironment (TME) is a unique environment that is developed by the tumor and controlled by tumor-induced interactions with host cells during tumor progression. The TME includes immune cells, which can be classified into two types: tumor- antagonizing and tumor-promoting immune cells. Increasing the tumor treatment responses is associated with the tumor immune microenvironment. Targeting the TME has become a popular topic in research, which includes polarizing macrophage phenotype 2 into macrophage phenotype 1 using Toll-like receptor agonists with cytokines, anti-CD47, and anti-SIPRα. Moreover, inhibiting regulatory T cells through blockades and depletion restricts immunosuppressive cells in the TME. Reprogramming T cell infiltration and T cell exhaustion improves tumor infiltrating lymphocytes, such as CD8+ or CD4+ T cells. Targeting metabolic pathways, including glucose, lipid, and amino acid metabolisms, can suppress tumor growth by restricting the absorption of nutrients and adenosine triphosphate energy into tumor cells. In conclusion, these TME reprogramming strategies exhibit more effective responses using combination treatments, biomaterials, and nanoparticles. This review highlights how biomaterials and immunotherapy can reprogram TME and improve the immune activity.

20.
Bioeng Transl Med ; 8(1): e10320, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36684080

RESUMEN

Self-injectable therapy has several advantages in the treatment of metabolic disorders. However, frequent injections with needles impair patient compliance and medication adherence. Therefore, we develop a fully implantable device capable of on-demand administration of self-injection drugs via noninvasive manual button clicks on the outer skin. The device is designed to infuse the drug only at the moment of click actuation, which allows for an accurate and reproducible drug infusion, and also prevents unwanted drug leakage. Using a mechanical means of drug infusion, this implantable device does not contain any electronic compartments or batteries, making it compact, and semi-permanent. When tested in animals, the device can achieve subcutaneous injection-like pharmacokinetic and pharmacodynamic effects for self-injection drugs such as exenatide, insulin, and glucagon.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA