Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(32): 42164-42175, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39096244

RESUMEN

The nanostructure of Nafion and poly(vinylidene fluoride) (PVDF) blend membranes is successfully aligned through a mechanical uniaxial stretching method. The phase-separated morphology of Nafion molecules distinctly forms hydrophilic proton channels with increased connectivity, resulting in enhanced proton conductivity. Additionally, the crystalline phase of PVDF molecules undergoes a successful transformation from the α- to ß-phase during membrane stretching, demonstrating an alignment of fluorine and hydrogen atoms with a TTTT(trans) structure. The aligned nanostructure of the blend film, combined with the dipole polarization of the ß-phase PVDF, synergistically enhances the proton conduction through the membrane for operating proton-exchange membrane fuel cells (PEMFCs). The controlled structures of the blend membranes are thoroughly investigated using atomic force microscopy and small-angle X-ray scattering. Furthermore, the improved in-plane proton conductivity facilitates increased proton conduction at the interface between the membrane and catalyst layer in the membrane-electrode assembly, ultimately enhancing the power generation of PEMFCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA