RESUMEN
The population of older adults is increasing more rapidly in Korea than in any other country, making successful aging a salient need in Korean society. For successful aging, older adults must engage in sports activities regularly. This study determined the relationships among health beliefs, exercise adherence intention, health promotion behavior, and successful aging among older adults who engage in sports activities regularly. The participants were 287 adults aged 65 years or older who live in Korea and exercise regularly. Data were collected through a survey and analyzed using descriptive statistics, correlation analysis, and structural equation modeling. The integrated model lacked explanatory power in terms of goodness of fit, but the alternative model had sufficient explanatory power. The alternative model showed that health beliefs, exercise adherence intention, and health promotion behavior are significantly related and that health promotion behavior positively predicts successful aging. It also showed that health beliefs affect successful aging through the mediation of exercise adherence intention and health promotion behavior. This study is meaningful because it verifies the structural and theoretical relationships among health beliefs, exercise adherence intention, health promotion behavior, and successful aging. As a result, it provides information that can improve the welfare of older adults in Korean society.
RESUMEN
Loss-of-function mutations in the genes encoding PINK1 and PRKN result in early-onset Parkinson disease (EOPD). Together the encoded enzymes direct a neuroprotective pathway that ensures the elimination of damaged mitochondria via autophagy. We performed a genome-wide high content imaging miRNA screen for inhibitors of the PINK1-PRKN pathway and identified all three members of the miRNA family 29 (miR-29). Using RNAseq we identified target genes and found that siRNA against ATG9A phenocopied the effects of miR-29 and inhibited the initiation of PINK1-PRKN mitophagy. Furthermore, we discovered two rare, potentially deleterious, missense variants (p.R631W and p.S828L) in our EOPD cohort and tested them experimentally in cells. While expression of wild-type ATG9A was able to rescue the effects of miR-29a, the EOPD-associated variants behaved like loss-of-function mutations. Together, our study validates miR-29 and its target gene ATG9A as novel regulators of mitophagy initiation. It further serves as proof-of-concept of finding novel, potentially disease-causing EOPD-linked variants specifically in mitophagy regulating genes. The nomination of genetic variants and biological pathways is important for the stratification and treatment of patients that suffer from devastating diseases, such as EOPD.
RESUMEN
The enzymatic actions of endonucleases in vivo can be altered due to bound substrates and differences in local environments, including enzyme concentration, pH, salinity, ionic strength, and temperature. Thus, accurate estimation of enzymatic reactions in vivo using matrix-dependent methods in solution can be challenging. Here, we report a matrix-insensitive magnetic biosensing platform that enables the measurement of endonuclease activity under different conditions with varying pH, salinity, ionic strength, and temperature. Using biosensor arrays and orthogonal pairs of oligonucleotides, we quantitatively characterized the enzymatic activity of EcoRI under different buffer conditions and in the presence of inhibitors. To mimic a more physiological environment, we monitored the sequence-dependent star activity of EcoRI under unconventional conditions. Furthermore, enzymatic activity was measured in cell culture media, saliva, and serum. Last, we estimated the effective cleavage rates of Cas12a on anchored single-strand DNAs using this platform, which more closely resembles in vivo settings. This platform will facilitate precise characterization of restriction and Cas endonucleases under various conditions.
Asunto(s)
Técnicas Biosensibles , Endonucleasas , Desoxirribonucleasa EcoRI/metabolismo , Endonucleasas/metabolismo , Oligonucleótidos , Cinética , Fenómenos Magnéticos , Enzimas de Restricción del ADN/metabolismoRESUMEN
Magnetoresistance-based biosensors utilize changes in electrical resistance upon varying magnetic fields to measure biological molecules or events involved with magnetic tags. However, electrical resistance fluctuates with temperature. To decouple unwanted temperature-dependent signals from the signal of interest, various methods have been proposed to correct signals from magnetoresistance-based biosensors. Yet, there is still a need for a temperature correction method capable of instantaneously correcting signals from all sensors in an array, as multiple biomarkers need to be detected simultaneously with a group of sensors in a central laboratory or point-of-care setting. Here we report a giant magnetoresistive biosensor system that enables real-time temperature correction for individual sensors using temperature correction coefficients obtained through a temperature sweep generated by an integrated temperature modulator. The algorithm with individual temperature correction coefficients obviously outperformed that using the average temperature correction coefficient. Further, temperature regulation did not eliminate temperature-dependent signals completely. To demonstrate that the method can be used in biomedical applications where large temperature variations are involved, binding kinetics experiments and melting curve analysis were conducted with the temperature correction method. The method successfully removed all temperature-dependent artifacts and thus produced more precise kinetic parameters and melting temperatures of DNA hybrids.
RESUMEN
The aim of present study was to examine the mediating effect of presenteeism on the relationship between emotional labor and work engagement of coaches for disability sports. A total of 198 coaches in Korea participated in this study. Participants responded a survey measuring emotional labor, presenteeism, and work engagement. After analyzing the correlation between each variable, the mediation model was verified through structural equation model analysis. The results reveal that emotional labor of coaches for disability sports positively predicted their work engagement, but negatively predicted presenteeism. In addition, the participants' presenteeism can have a negative effect on their work engagement. Moreover, completing work in presenteeism was found to mediate the relationship between the deep acting and surface acting in emotional labor and work engagement of disability sports coaches.
Asunto(s)
Deportes , Compromiso Laboral , Humanos , Presentismo , Emociones , Encuestas y CuestionariosRESUMEN
A strategy is reported to improve the detection limits of current giant magnetoresistance (GMR) biosensors by augmenting the effective magnetic moment that the magnetic tags on the biosensors can exert. Magnetic supercluster particles (MSPs), each of which consists of ~ 1000 superparamagnetic cores, are prepared by a wet-chemical technique and are utilized to improve the limit of detection of GMR biosensors down to 17.6 zmol for biotin as a target molecule. This value is more than four orders of magnitude lower than that of the conventional colorimetric assay performed using the same set of reagents except for the signal transducer. The applicability of MSPs in immunoassay is further demonstrated by simultaneously detecting vascular endothelial growth factor (VEGF) and C-reactive protein (CRP) in a duplex assay format. MSPs outperform commercially available magnetic nanoparticles in terms of signal intensity and detection limit.
Asunto(s)
Técnicas Biosensibles , Factor A de Crecimiento Endotelial Vascular , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Fenómenos Magnéticos , Magnetismo/métodosRESUMEN
Many cells can generate complementary traveling waves of actin filaments (F-actin) and cytoskeletal regulators. This phenomenon, termed cortical excitability, results from coupled positive and negative feedback loops of cytoskeletal regulators. The nature of these feedback loops, however, remains poorly understood. We assessed the role of the Rho GAP RGA-3/4 in the cortical excitability that accompanies cytokinesis in both frog and starfish. RGA-3/4 localizes to the cytokinetic apparatus, "chases" Rho waves in an F-actin-dependent manner, and when coexpressed with the Rho GEF Ect2, is sufficient to convert the normally quiescent, immature Xenopus oocyte cortex into a dramatically excited state. Experiments and modeling show that changing the ratio of RGA-3/4 to Ect2 produces cortical behaviors ranging from pulses to complex waves of Rho activity. We conclude that RGA-3/4, Ect2, Rho, and F-actin form the core of a versatile circuit that drives a diverse range of cortical behaviors, and we demonstrate that the immature oocyte is a powerful model for characterizing these dynamics.