Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Eur J Pharmacol ; 981: 176847, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39089463

RESUMEN

Insomnia is one of the most common sleep disorders, affecting 10-15% of the global population. Because classical remedies used to treat insomnia have various side effects, new therapeutics for insomnia are attracting attention. In the present study, we found that N2-Ethyl-N4-(furan-2-ylmethyl) quinazoline-2,4-diamine (AR-001) has adenosine A1 receptor agonistic activity and exhibits hypnotic efficacy by decreasing sleep onset latency and increasing total sleep time in a pentobarbital-induced sleep model. This hypnotic effect of AR-001 was significantly inhibited by the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). As a result of immunohistochemistry, AR-001 was shown to increase neural activity in the sleep-promoting region, ventrolateral preoptic nucleus (VLPO), and decrease neural activity in the wake-promoting region, basal forebrain (BF), and lateral hypothalamus (LH), and that these effects of AR-001 were significantly inhibited by DPCPX treatment. In addition, AR-001 increased adenosine A1 receptor mRNA levels in the hypothalamus. In conclusion, this study suggests that AR-001 has a hypnotic effect, at least partially, through adenosine A1 receptor and may have therapeutic potential for insomnia.

2.
Angew Chem Int Ed Engl ; : e202411260, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39183147

RESUMEN

Nitric oxide (NO) is a gaseous molecule intricately implicated in oncologic processes, encompassing the modulation of angiogenesis and instigating apoptosis. Investigation of the antitumor effects of NO is currently underway, necessitating a detailed understanding of its cellular-level reactions. Regulating the behavior of radical NO species has been a significant challenge, primarily due to its instability in aqueous environments by rapid O2-induced degradation. In this study, we devised an electrochemical platform to investigate the cellular responses to reactive gaseous molecules. Our designed platform precisely controlled the NO flux and diffusion rates of NO to tumor cells. COMSOL Multiphysics calculations based on diffusion and reaction kinetics were conducted to simulate the behavior of electrochemically generated NO. We discerned that the effective distance, NO flux, and electrolysis duration are pivotal factors governing cellular response by NO.

3.
Sensors (Basel) ; 24(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39065873

RESUMEN

In the context of LiDAR sensor-based autonomous vehicles, segmentation networks play a crucial role in accurately identifying and classifying objects. However, discrepancies between the types of LiDAR sensors used for training the network and those deployed in real-world driving environments can lead to performance degradation due to differences in the input tensor attributes, such as x, y, and z coordinates, and intensity. To address this issue, we propose novel intensity rendering and data interpolation techniques. Our study evaluates the effectiveness of these methods by applying them to object tracking in real-world scenarios. The proposed solutions aim to harmonize the differences between sensor data, thereby enhancing the performance and reliability of deep learning networks for autonomous vehicle perception systems. Additionally, our algorithms prevent performance degradation, even when different types of sensors are used for the training data and real-world applications. This approach allows for the use of publicly available open datasets without the need to spend extensive time on dataset construction and annotation using the actual sensors deployed, thus significantly saving time and resources. When applying the proposed methods, we observed an approximate 20% improvement in mIoU performance compared to scenarios without these enhancements.

4.
J Neurosci ; 44(28)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38866482

RESUMEN

SLURP1 and SLURP2 are both small secreted members of the Ly6/u-PAR family of proteins and are highly expressed in keratinocytes. Loss-of-function mutations in SLURP1 lead to a rare autosomal recessive palmoplantar keratoderma (PPK), Mal de Meleda (MdM), which is characterized by diffuse, yellowish palmoplantar hyperkeratosis. Some individuals with MdM experience pain in conjunction with the hyperkeratosis that has been attributed to fissures or microbial superinfection within the affected skin. By comparison, other hereditary PPKs such as pachyonychia congenita and Olmsted syndrome show prevalent pain in PPK lesions. Two mouse models of MdM, Slurp1 knock-out and Slurp2X knock-out, exhibit robust PPK in all four paws. However, whether the sensory experience of these animals includes augmented pain sensitivity remains unexplored. In this study, we demonstrate that both models exhibit hypersensitivity to mechanical and thermal stimuli as well as spontaneous pain behaviors in males and females. Anatomical analysis revealed slightly reduced glabrous skin epidermal innervation and substantial alterations in palmoplantar skin immune composition in Slurp2X knock-out mice. Primary sensory neurons innervating hindpaw glabrous skin from Slurp2X knock-out mice exhibit increased incidence of spontaneous activity and mechanical hypersensitivity both in vitro and in vivo. Thus, Slurp knock-out mice exhibit polymodal PPK-associated pain that is associated with both immune alterations and neuronal hyperexcitability and might therefore be useful for the identification of therapeutic targets to treat PPK-associated pain.


Asunto(s)
Antígenos Ly , Queratodermia Palmoplantar , Ratones Noqueados , Activador de Plasminógeno de Tipo Uroquinasa , Animales , Femenino , Masculino , Ratones , Antígenos Ly/genética , Antígenos Ly/metabolismo , Modelos Animales de Enfermedad , Hiperalgesia/genética , Hiperalgesia/fisiopatología , Queratodermia Palmoplantar/genética , Queratodermia Palmoplantar/patología , Ratones Endogámicos C57BL , Umbral del Dolor/fisiología , Activador de Plasminógeno de Tipo Uroquinasa/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo
5.
Biomol Ther (Seoul) ; 32(4): 481-491, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38835145

RESUMEN

Paxlovid is the first approved oral treatment for coronavirus disease 2019 and includes nirmatrelvir, a protease inhibitor targeting the main protease (Mpro) of SARS-CoV-2, as one of the key components. While some specific mutations emerged in Mpro were revealed to significantly reduce viral susceptibility to nirmatrelvir in vitro, there is no report regarding resistance to nirmatrelvir in patients and animal models for SARS-CoV-2 infection yet. We recently developed xenograft tumors derived from Calu-3 cells in immunodeficient mice and demonstrated extended replication of SARS-CoV-2 in the tumors. In this study, we investigated the effect of nirmatrelvir administration on SARS-CoV-2 replication. Treatment with nirmatrelvir after virus infection significantly reduced the replication of the parental SARS-CoV-2 and SARS-CoV-2 Omicron at 5 days post-infection (dpi). However, the virus titers were completely recovered at the time points of 15 and 30 dpi. The virus genomes in the tumors at 30 dpi were analyzed to investigate whether nirmatrelvir-resistant mutant viruses had emerged during the extended replication of SARS-CoV-2. Various mutations in several genes including ORF1ab, ORF3a, ORF7a, ORF7b, ORF8, and N occurred in the SARS-CoV-2 genome; however, no mutations were induced in the Mpro sequence by a single round of nirmatrelvir treatment, and none were observed even after two rounds of treatment. The parental SARS-CoV-2 and its sublineage isolates showed similar IC50 values of nirmatrelvir in Vero E6 cells. Therefore, it is probable that inducing viral resistance to nirmatrelvir in vivo is challenging differently from in vitro passage.

6.
Anim Cells Syst (Seoul) ; 28(1): 184-197, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38693921

RESUMEN

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has chemotherapeutic potential as a regulator of an extrinsic apoptotic ligand, but its effect as a drug is limited by innate and acquired resistance. Recent findings suggest that an intermediate drug tolerance could mediate acquired resistance, which has made the main obstacle for limited utility of TRAIL as an anti-cancer therapeutics. We propose miRNA-dependent epigenetic modification drives the drug tolerant state in TRAIL-induced drug tolerant (TDT). Transcriptomic analysis revealed miR-29 target gene activation in TDT cells, showing oncogenic signature in lung cancer. Also, the restored TRAIL-sensitivity was associated with miR-29ac and 140-5p expressions, which is known as tumor suppressor by suppressing oncogenic protein RSK2 (p90 ribosomal S6 kinase), further confirmed in patient samples. Moreover, we extended this finding into 119 lung cancer cell lines from public data set, suggesting a significant correlation between TRAIL-sensitivity and RSK2 mRNA expression. Finally, we found that increased RSK2 mRNA is responsible for NF-κB activation, which we previously showed as a key determinant in both innate and acquired TRAIL-resistance. Our findings support further investigation of miR-29ac and -140-5p inhibition to maintain TRAIL-sensitivity and improve the durability of response to TRAIL in lung cancer.

7.
Medicina (Kaunas) ; 60(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38792992

RESUMEN

Background and Objectives: This study aimed to evaluate the mid-term effectiveness and safety of a combined ultrasound (US) and fluoroscopy (FL)-guided approach in comparison to US-guided and FL-guided caudal epidural steroid injections (CESI) for treating unilateral lower lumbar radicular pain. Materials and Methods: A total of 154 patients who underwent CESI between 2018 and 2022 were included. Patients were categorized into three groups based on the guidance method: combined US and FL (n = 51), US-guided (n = 51), and FL-guided (n = 52). The study design was retrospective case-controlled, utilizing patient charts and standardized forms to assess clinical outcomes, adverse events, complications during the procedures. Results: In all groups, Oswestry Disability Index and Verbal Numeric Scale scores improved at 1, 3, and 6 months after the last injection, with no significant differences between groups (p < 0.05). The treatment success rate at all time points was also similar among the groups. Logistic regression analysis showed that injection method, cause, sex, age, number of injections, and pain duration did not independently predict treatment success. Blood was aspirated before injection in 2% (n = 1), 13.5% (n = 7), and 4% (n = 2) of patients in the combined US and FL groups, FL-guided groups, and US-guided groups, respectively. Intravascular contrast spread was detected in one patient in the combined method groups and seven in the FL-guided groups. Conclusions: When comparing pain reduction and functional improvement, there was no significant difference between the three methods. The combined method took less time compared to using FL alone. The combined approach also showed a lower occurrence of intravascular injection compared to using FL alone. Moreover, blood vessels at the injection site can be identified with an ultrasound using the combined method. Given these advantages, it might be advisable to prioritize the combined US- and FL-guided therapy when administering CESI for patients with unilateral lumbar radicular pain.


Asunto(s)
Dolor de la Región Lumbar , Esteroides , Humanos , Estudios Retrospectivos , Fluoroscopía/métodos , Femenino , Masculino , Persona de Mediana Edad , Inyecciones Epidurales/métodos , Esteroides/administración & dosificación , Esteroides/uso terapéutico , Dolor de la Región Lumbar/tratamiento farmacológico , Adulto , Anciano , Ultrasonografía Intervencional/métodos , Resultado del Tratamiento , Radiculopatía/tratamiento farmacológico , Radiculopatía/complicaciones , Estudios de Casos y Controles , Vértebras Lumbares , Ultrasonografía/métodos , Región Lumbosacra
8.
Int J Mol Sci ; 25(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38791249

RESUMEN

Atopic dermatitis (AD) is a chronic inflammatory skin disorder influenced by genetic predisposition, environmental factors, immune dysregulation, and skin barrier dysfunction. The skin microbiome and metabolome play crucial roles in modulating the skin's immune environment and integrity. However, their specific contributions to AD remain unclear. We aimed to investigate the distinct skin microbial communities and skin metabolic compounds in AD patients compared to healthy controls (HCs). Seven patients with AD patients and seven HCs were enrolled, from whom skin samples were obtained for examination. The study involved 16S rRNA metagenomic sequencing and bioinformatics analysis as well as the use of gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) to detect metabolites associated with AD in the skin. We observed significant differences in microbial diversity between lesional and non-lesional skin of AD patients and HCs. Staphylococcus overgrowth was prominent in AD lesions, while Cutibacterium levels were decreased. Metabolomic analysis revealed elevated levels of several metabolites, including hypoxanthine and glycerol-3-phosphate in AD lesions, indicating perturbations in purine metabolism and energy production pathways. Moreover, we found a positive correlation between hypoxanthine and glycerol-3-phosphate and clinical severity of AD and Staphylococcus overgrowth. These findings suggest potential biomarkers for monitoring AD severity. Further research is needed to elucidate the causal relationships between microbial dysbiosis, metabolic alterations, and AD progression, paving the way for targeted therapeutic interventions.


Asunto(s)
Dermatitis Atópica , Metaboloma , Microbiota , Piel , Dermatitis Atópica/microbiología , Dermatitis Atópica/metabolismo , Humanos , Piel/microbiología , Piel/metabolismo , Femenino , Masculino , Adulto , ARN Ribosómico 16S/genética , Metabolómica/métodos , Adulto Joven , Persona de Mediana Edad , Estudios de Casos y Controles
9.
J Extracell Vesicles ; 13(4): e12438, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38659363

RESUMEN

Enveloped viruses pose a significant threat to human health, as evidenced by the recent COVID-19 pandemic. Although current vaccine strategies have proven effective in preventing viral infections, the development of innovative vaccine technologies is crucial to fortify our defences against future pandemics. In this study, we introduce a novel platform called cell-engineered virus-mimetic nanovesicles (VNVs) and demonstrate their potential as a vaccine for targeting enveloped viruses. VNVs are generated by extruding plasma membrane-derived blebs through nanoscale membrane filters. These VNVs closely resemble enveloped viruses and extracellular vesicles (EVs) in size and morphology, being densely packed with plasma membrane contents and devoid of materials from other membranous organelles. Due to these properties, VNVs express viral membrane antigens more extensively and homogeneously than EVs expressing the same antigen. In this study, we produced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) VNVs expressing the SARS-CoV-2 Spike glycoprotein (S) on their surfaces and assessed their preclinical efficacy as a COVID-19 vaccine in experimental animals. The administration of VNVs successfully stimulated the production of S-specific antibodies both systemically and locally, and immune cells isolated from vaccinated mice displayed cytokine responses to S stimulation.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vesículas Extracelulares , SARS-CoV-2 , Animales , SARS-CoV-2/inmunología , Ratones , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , COVID-19/inmunología , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Humanos , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Vacunación/métodos , Femenino , Anticuerpos Antivirales/inmunología , Ratones Endogámicos BALB C
10.
Virus Genes ; 60(3): 251-262, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38587722

RESUMEN

SARS-CoV-2 Omicron has the largest number of mutations among all the known SARS-CoV-2 variants. The presence of these mutations might explain why Omicron is more infectious and vaccines have lower efficacy to Omicron than other variants, despite lower virulence of Omicron. We recently established a long-term in vivo replication model by infecting Calu-3 xenograft tumors in immunodeficient mice with parental SARS-CoV-2 and found that various mutations occurred majorly in the spike protein during extended replication. To investigate whether there are differences in the spectrum and frequency of mutations between parental SARS-CoV-2 and Omicron, we here applied this model to Omicron. At 30 days after infection, we found that the virus was present at high titers in the tumor tissues and had developed several rare sporadic mutations, mainly in ORF1ab with additional minor spike protein mutations. Many of the mutant isolates had higher replicative activity in Calu-3 cells compared with the original SARS-CoV-2 Omicron virus, suggesting that the novel mutations contributed to increased viral replication. Serial propagation of SARS-CoV-2 Omicron in cultured Calu-3 cells resulted in several rare sporadic mutations in various viral proteins with no mutations in the spike protein. Therefore, the genome of SARS-CoV-2 Omicron seems largely stable compared with that of the parental SARS-CoV-2 during extended replication in Calu-3 cells and xenograft model. The sporadic mutations and modified growth properties observed in Omicron might explain the emergence of Omicron sublineages. However, we cannot exclude the possibility of some differences in natural infection.


Asunto(s)
COVID-19 , Neoplasias Pulmonares , Mutación , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Replicación Viral , Animales , Replicación Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Ratones , Humanos , COVID-19/virología , Neoplasias Pulmonares/virología , Neoplasias Pulmonares/genética , Glicoproteína de la Espiga del Coronavirus/genética , Modelos Animales de Enfermedad , Línea Celular Tumoral
13.
Proc Natl Acad Sci U S A ; 121(14): e2400868121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38547066

RESUMEN

Partial cystectomy procedures for urinary bladder-related dysfunction involve long recovery periods, during which urodynamic studies (UDS) intermittently assess lower urinary tract function. However, UDS are not patient-friendly, they exhibit user-to-user variability, and they amount to snapshots in time, limiting the ability to collect continuous, longitudinal data. These procedures also pose the risk of catheter-associated urinary tract infections, which can progress to ascending pyelonephritis due to prolonged lower tract manipulation in high-risk patients. Here, we introduce a fully bladder-implantable platform that allows for continuous, real-time measurements of changes in mechanical strain associated with bladder filling and emptying via wireless telemetry, including a wireless bioresorbable strain gauge validated in a benchtop partial cystectomy model. We demonstrate that this system can reproducibly measure real-time changes in a rodent model up to 30 d postimplantation with minimal foreign body response. Studies in a nonhuman primate partial cystectomy model demonstrate concordance of pressure measurements up to 8 wk compared with traditional UDS. These results suggest that our system can be used as a suitable alternative to UDS for long-term postoperative bladder recovery monitoring.


Asunto(s)
Vejiga Urinaria , Infecciones Urinarias , Animales , Humanos , Vejiga Urinaria/cirugía , Urodinámica/fisiología , Prótesis e Implantes , Cistectomía
14.
Plants (Basel) ; 13(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38475571

RESUMEN

Radish (Raphanus sativus L.), a root vegetable belonging to the Brassicaceae family, is considered one of the representative crops displaying sporophytic self-incompatibility (SSI). The utilization of a self-incompatibility system in F1 breeding can improve the efficiency of cross-combinations, leading to a reduction in breeding time and aiding in the development of novel F1 varieties. The successful implementation of this system necessitates the rapid and accurate identification of S haplotypes in parental lines. In this study, we identified a total of nine S haplotypes among 22 elite radish lines through Sanger sequencing. Subsequently, we obtained sequences for showing a 95% similarity to nine S haplotypes, along with sequences identified by other researchers using BLAST. Following this, multiple sequence alignment (MSA) was conducted to identify SRK and SLG sequence similarities, as well as polymorphisms within the class I and II groups. Subsequently, S haplotype-specific marker sets were developed, targeting polymorphic regions of SRK and SLG alleles. These markers successfully amplified each of the nine S haplotypes. These markers will play a crucial role in the rapid and precise identification of parental S haplotypes in the radish F1 breeding process, proving instrumental in the radish F1 purity test.

15.
Nat Commun ; 15(1): 1366, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355558

RESUMEN

Efficient pathogen enrichment and nucleic acid isolation are critical for accurate and sensitive diagnosis of infectious diseases, especially those with low pathogen levels. Our study introduces a biporous silica nanofilms-embedded sample preparation chip for pathogen and nucleic acid enrichment/isolation. This chip features unique biporous nanostructures comprising large and small pore layers. Computational simulations confirm that these nanostructures enhance the surface area and promote the formation of nanovortex, resulting in improved capture efficiency. Notably, the chip demonstrates a 100-fold lower limit of detection compared to conventional methods used for nucleic acid detection. Clinical validations using patient samples corroborate the superior sensitivity of the chip when combined with the luminescence resonance energy transfer assay. The enhanced sample preparation efficiency of the chip, along with the facile and straightforward synthesis of the biporous nanostructures, offers a promising solution for polymer chain reaction-free detection of nucleic acids.


Asunto(s)
Nanoestructuras , Ácidos Nucleicos , Humanos , Microfluídica , Dióxido de Silicio , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Técnicas de Amplificación de Ácido Nucleico
16.
J Med Virol ; 96(2): e29459, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38345153

RESUMEN

We recently established a long-term SARS-CoV-2 infection model using lung-cancer xenograft mice and identified mutations that arose in the SARS-CoV-2 genome during long-term propagation. Here, we applied our model to the SARS-CoV-2 Delta variant, which has increased transmissibility and immune escape compared with ancestral SARS-CoV-2. We observed limited mutations in SARS-CoV-2 Delta during long-term propagation, including two predominant mutations: R682W in the spike protein and L330W in the nucleocapsid protein. We analyzed two representative isolates, Delta-10 and Delta-12, with both predominant mutations and some additional mutations. Delta-10 and Delta-12 showed lower replication capacity compared with SARS-CoV-2 Delta in cultured cells; however, Delta-12 was more lethal in K18-hACE2 mice compared with SARS-CoV-2 Delta and Delta-10. Mice infected with Delta-12 had higher viral titers, more severe histopathology in the lungs, higher chemokine expression, increased astrocyte and microglia activation, and extensive neutrophil infiltration in the brain. Brain tissue hemorrhage and mild vacuolation were also observed, suggesting that the high lethality of Delta-12 was associated with lung and brain pathology. Our long-term infection model can provide mutant viruses derived from SARS-CoV-2 Delta and knowledge about the possible contributions of emergent mutations to the properties of new variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Animales , Ratones , Xenoinjertos , SARS-CoV-2/genética , Encéfalo
17.
ACS Appl Mater Interfaces ; 16(8): 10307-10315, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38380594

RESUMEN

The cost reduction and mass production of oxide-based solid electrolytes are critical for the commercialization of all-solid-state batteries. In this study, an environmentally friendly, low-cost, and high-density oxide-based Na superionic conductor-type solid electrolyte sheet was fabricated via a dry process without the use of any solvent. The polytetrafluoroethylene (PTFE), used as a binder, was transformed into thin thread-like structures via shear force, resulting in a flexible solid electrolyte sheet. The solid electrolyte powder quantity was limited to 50 wt % for fabricating a uniform green sheet via the wet process. However, when the dry process was employed for green sheet fabrication, the solid electrolyte powder quantity could be increased to values exceeding 95 wt %. Therefore, the green sheets produced by using the dry process demonstrated a higher density than those fabricated by using the wet process. The binder content and particle size affected the ionic conductivity of a solid electrolyte sheet fabricated via a dry process. The sheet obtained via the blending of 3 wt % PTFE binder with a solid electrolyte powder, finely ground using a planetary ball mill, which exhibited the highest total ionic conductivity of 1.03 mS cm-1.

18.
Lab Chip ; 24(5): 1088-1120, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38174732

RESUMEN

Chimeric antigen receptor (CAR)-T cell therapies have revolutionized cancer treatment, particularly in hematological malignancies. However, their application to solid tumors is limited, and they face challenges in safety, scalability, and cost. To enhance current CAR-T cell therapies, the integration of microfluidic technologies, harnessing their inherent advantages, such as reduced sample consumption, simplicity in operation, cost-effectiveness, automation, and high scalability, has emerged as a powerful solution. This review provides a comprehensive overview of the step-by-step manufacturing process of CAR-T cells, identifies existing difficulties at each production stage, and discusses the successful implementation of microfluidics and related technologies in addressing these challenges. Furthermore, this review investigates the potential of microfluidics-based methodologies in advancing cell-based therapy across various applications, including solid tumors, next-generation CAR constructs, T-cell receptors, and the development of allogeneic "off-the-shelf" CAR products.


Asunto(s)
Microfluídica , Neoplasias , Humanos , Linfocitos T , Receptores de Antígenos de Linfocitos T , Inmunoterapia/métodos , Inmunoterapia Adoptiva/métodos , Neoplasias/patología
19.
Diagnostics (Basel) ; 14(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38248037

RESUMEN

Dedifferentiation is a very rare phenomenon in uterine leiomyosarcoma (LMS). The aim of this study was to comprehensively analyze the clinicopathological characteristics of uterine dedifferentiated LMS (DDLMS). We reviewed electronic medical records and pathology slides from five patients with uterine DDLMS and performed immunostaining. The mean age of the patients was 56 years. Two patients presented with abdominal discomfort, while in three cases the uterine tumors were detected on routine medical examination. The mean size of the tumors was 17.0 cm. Four patients underwent hysterectomy. The initial stages were distributed as IB (2/5), IIIC (2/5), and IVC (1/5). Post-operative concurrent chemoradiation therapy, radiation therapy, and chemotherapy were administered in one, one, and two patients, respectively. Despite post-operative treatment, three patients developed metastatic recurrences in the abdominal and pelvic organs. Recurrence-free survival time ranged between 4 and 30 months. Histologically, the differentiated areas demonstrated the classic morphology of malignant smooth muscle differentiation, whereas the dedifferentiated areas resembled undifferentiated pleomorphic sarcoma and were characterized by large pleomorphic tumor cells admixed with haphazardly arranged atypical cells with marked nuclear pleomorphism. All cases also exhibited heterologous components, including chondrosarcoma (CSA; 3/5) and rhabdomyosarcoma (2/5). In two cases, the heterologous components were initially detected in primary tumors. In three cases, the primary tumors did not exhibit any dedifferentiated or heterologous components. Instead, more than half of the recurrent tumors consisted of heterologous components. Three cases showed a sharp demarcation between the LMS and CSA components, while in two cases the dedifferentiated area imperceptibly merged with the differentiated component. Immunostaining revealed that the dedifferentiated components exhibited a lack of desmin immunoreactivity in three of the four examined cases. A subset of uterine LMS represents various amounts and types of dedifferentiation and heterologous components in both primary and recurrent tumors. Routine recognition of DDLMS and distinction from its mimickers are required for accurate diagnosis and further characterization of these rare tumors.

20.
Healthcare (Basel) ; 12(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255012

RESUMEN

This study was conducted to investigate and understand various aspects related to participants' experiences in peer support activities, with a particular focus on their personal growth and the influence of these activities on their lives. In this qualitative study, peer support workers with mental illness were the main subjects, and they were recruited from G Metropolitan City, South Korea. The study used purposive sampling, guided by recommendations from peer support worker support organizations. A total of five participants were selected using purposive sampling to ensure maximum variability in the sample. Data collection involved semi-structured individual interviews, and data analysis was conducted using the interpretative phenomenological analysis (IPA) method. Following the IPA procedure for data analysis, the study revealed six themes that encapsulated the recovery experiences of peer support workers with mental illness: (1) Facing confusion and challenges, (2) Rising and refining myself, (3) Navigating the paths of relationships, (4) Gazing at the desired horizons, (5) Awakening the inner hero, and (6) Standing as a person who cherishes life. This research underscores the positive impact of peer support activities on individuals who have faced mental health challenges. It emphasizes the significance of self-discovery, the development of supportive relationships, and the aspiration for a brighter future. These findings contribute to the expanding body of knowledge regarding the benefits of peer support in the context of mental health recovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA