RESUMEN
In this paper, we report the development of a rapid and simple, liquid crystal (LC)-based aptasensor that enables the detection of malathion (MA) using the orientation properties of liquid crystals. This sensor is composed of aptamers immobilized on a surface decorated with a self-assembled monolayer of (3-glycidyloxypropyl)trimethoxysilane (GOPS) and dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP). When MA interacts with the immobilized aptamers, an orientational change in the LCs, from homeotropic to random, is induced. This orientational change generates visible optical responses observed as shifts from dark to bright images under a polarized optical microscope (POM). This sensing system has a linear detection range from 0.8 to 50 pM, with a correlation coefficient of 0.9922, and a limit of detection (LOD) of 2.5 pM (≈0.826 pg/mL). Our proposed aptasensor has good specificity and sensitivity to MA in tap water and soil. Moreover, this sensor suggests a promising strategy for simple, rapid testing for various insecticide residues.