Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Analyst ; 149(4): 1190-1201, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38213181

RESUMEN

The advancement of point-of-care diagnostics is crucial to improving patient outcomes, especially in areas with low access to hospitals or specialized laboratories. In particular, rapid, sensitive, and multiplexed detection of disease biomarkers has great potential to achieve accurate diagnosis and inform high quality care for patients. Our Coulter counting and immunocapture based detection system has previously shown its broad applicability in the detection of cells, proteins, and nucleic acids. This paper expands the capability of the platform by demonstrating multiplexed detection of whole-virus particles using electrically distinguishable hydrogel beads by demonstrating the capability of our platform to achieve simultaneous detection at clinically relevant concentrations of hepatitis A virus (>2 × 103 IU mL-1) and human parvovirus B19 virus like particles (>106 IU mL-1) from plasma samples. The expanded versatility of the differential electrical counting platform allows for more robust and diverse testing capabilities.


Asunto(s)
Ácidos Nucleicos , Parvovirus B19 Humano , Humanos , Microfluídica , Proteínas
2.
Artículo en Inglés | MEDLINE | ID: mdl-37483649

RESUMEN

Sepsis is a life-threatening dysfunction of organ systems caused by a dysregulated immune system because of an infectious process. It remains one of the leading causes of hospital mortality and of hospital readmissions in the United States. Mortality from sepsis increases with each hour of delayed treatment, therefore, diagnostic devices that can reduce the time from the onset of a patient's infection to the delivery of appropriate therapy are urgently needed. Likewise, tools that are capable of high-frequency testing of clinically relevant biomarkers are required to study disease progression. Electrochemical biosensors offer important advantages such as high sensitivity, fast response, miniaturization, and low cost that can be adapted to clinical needs. In this review paper, we discuss the current state, limitations, and future directions of electrochemical-based point-of-care detection platforms that contribute to the diagnosis and monitoring of sepsis.

3.
Analyst ; 147(17): 3838-3853, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35726910

RESUMEN

Rapid, simple, inexpensive, accurate, and sensitive point-of-care (POC) detection of viral pathogens in bodily fluids is a vital component of controlling the spread of infectious diseases. The predominant laboratory-based methods for sample processing and nucleic acid detection face limitations that prevent them from gaining wide adoption for POC applications in low-resource settings and self-testing scenarios. Here, we report the design and characterization of an integrated system for rapid sample-to-answer detection of a viral pathogen in a droplet of whole blood comprised of a 2-stage microfluidic cartridge for sample processing and nucleic acid amplification, and a clip-on detection instrument that interfaces with the image sensor of a smartphone. The cartridge is designed to release viral RNA from Zika virus in whole blood using chemical lysis, followed by mixing with the assay buffer for performing reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP) reactions in six parallel microfluidic compartments. The battery-powered handheld detection instrument uniformly heats the compartments from below, and an array of LEDs illuminates from above, while the generation of fluorescent reporters in the compartments is kinetically monitored by collecting a series of smartphone images. We characterize the assay time and detection limits for detecting Zika RNA and gamma ray-deactivated Zika virus spiked into buffer and whole blood and compare the performance of the same assay when conducted in conventional PCR tubes. Our approach for kinetic monitoring of the fluorescence-generating process in the microfluidic compartments enables spatial analysis of early fluorescent "bloom" events for positive samples, in an approach called "Spatial LAMP" (S-LAMP). We show that S-LAMP image analysis reduces the time required to designate an assay as a positive test, compared to conventional analysis of the average fluorescent intensity of the entire compartment. S-LAMP enables the RT-LAMP process to be as short as 22 minutes, resulting in a total sample-to-answer time in the range of 17-32 minutes to distinguish positive from negative samples, while demonstrating a viral RNA detection as low as 2.70 × 102 copies per µl, and a gamma-irradiated virus of 103 virus particles in a single 12.5 µl droplet blood sample.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Microfluídica , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral/genética , Sensibilidad y Especificidad , Teléfono Inteligente , Instrumentos Quirúrgicos , Virus Zika/genética , Infección por el Virus Zika/diagnóstico
4.
Lab Chip ; 22(7): 1297-1309, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35244660

RESUMEN

Since the beginning of the COVID-19 pandemic, several mutations of the SARS-CoV-2 virus have emerged. Current gold standard detection methods for detecting the virus and its variants are based on PCR-based diagnostics using complex laboratory protocols and time-consuming steps, such as RNA isolation and purification, and thermal cycling. These steps limit the translation of technology to the point-of-care and limit accessibility to under-resourced regions. While PCR-based assays currently offer the possibility of multiplexed gene detection, and commercial products of single gene PCR and isothermal LAMP at point-of-care are also now available, reports of isothermal assays at the point-of-care with detection of multiple genes are lacking. Here, we present a microfluidic assay and device to detect and differentiate the Alpha variant (B.1.1.7) from the SARS-CoV-2 virus early strains in saliva samples. The detection assay, which is based on isothermal RT-LAMP amplification, takes advantage of the S-gene target failure (SGTF) to differentiate the Alpha variant from the SARS-CoV-2 virus early strains using a binary detection system based on spatial separation of the primers specific to the N- and S-genes. We use additively manufactured plastic cartridges in a low-cost optical reader system to successfully detect the SARS-CoV-2 virus from saliva samples (positive amplification is detected with concentration ≥10 copies per µL) within 30 min. We demonstrate that our platform can discriminate the B.1.1.7 variant (USA/CA_CDC_5574/2020 isolate) from SARS-CoV-2 negative samples, but also from the SARS-CoV-2 USA-WA1/2020 isolate. The reliability of the developed point-of-care device was confirmed by testing 38 clinical saliva samples, including 20 samples positive for Alpha variant (sensitivity > 90%, specificity = 100%). This study highlights the current relevance of binary-based testing, as the new Omicron variant also exhibits S-gene target failure and could be tested by adapting the approach presented here.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Microfluídica , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Pandemias , Sistemas de Atención de Punto , ARN Viral/análisis , ARN Viral/genética , Reproducibilidad de los Resultados , SARS-CoV-2/genética , Sensibilidad y Especificidad
5.
ACS Nano ; 15(5): 7899-7906, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33984237

RESUMEN

Point-of-care (POC) detection technologies that enable decentralized, rapid, sensitive, low-cost diagnostics of COVID-19 infection are urgently needed around the world. With many technologies approved for commercialization in the past 10 months, the field of COVID-19 POC diagnostics is rapidly evolving. In this Perspective, we analyze the current state of POC technologies for the diagnosis and monitoring of COVID-19 infection and discuss future challenges in COVID-19 diagnostics. As the COVID-19 pandemic becomes endemic, the advances gained during this past year will likely also be utilized for future prediction of emerging outbreaks and pandemics.


Asunto(s)
COVID-19 , Pandemias , Humanos , Sistemas de Atención de Punto , Pruebas en el Punto de Atención , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA