Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Biomed Opt ; 28(2): 029801, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36864902

RESUMEN

[This corrects the article DOI: 10.1117/1.JBO.27.12.125001.].

2.
J Biomed Opt ; 27(12): 125001, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36530344

RESUMEN

Significance: Traditional pathology workflow suffers from limitations including biopsy invasiveness, small fraction of large tissue samples being analyzed, and complex and time-consuming processing. Aim: We address limitations of conventional pathology workflow through development of a laser microbiopsy device for minimally invasive harvest of sub-microliter tissue volumes. Laser microbiopsy combined with rapid diagnostic methods, such as virtual hematoxylin and eosin (H&E) imaging has potential to provide rapid minimally invasive tissue diagnosis. Approach: Laser microbiopsies were harvested using an annular shaped Ho:YAG laser beam focused onto the tissue surface. As the annulus was ablated, the tissue section in the center of the annulus was ejected and collected directly onto a glass slide for analysis. Cryogen spray cooling was used before and after laser harvest to limit thermal damage. Microbiopsies were collected from porcine skin and kidney. Harvested microbiopsies were imaged with confocal microscopy and digitally false colored to provide virtual H&E images. Results: Microbiopsies were successfully harvested from porcine skin and kidney. Computational and experimental results show the benefit of cryogen pre- and post-cooling to limit thermal damage. Virtual H&E images of microbiopsies retained observable cellular features including cell nuclei. Conclusions: Laser microbiopsy with virtual H&E imaging shows promise as a potential rapid and minimally invasive tool for biopsy and diagnosis.


Asunto(s)
Biopsia , Láseres de Estado Sólido , Animales , Biopsia/métodos , Microscopía Confocal , Porcinos
3.
J Endourol ; 35(S3): S29-S36, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34910606

RESUMEN

Introduction: This study aimed at answering three research questions: (1) Under the experimental conditions studied, what is the dominant mechanism of Holmium:YAG lithotripsy with or without pulse modulation? (2) Under what circumstances can laser pulse modulation increase crater volume of stone ablation per joule of emitted radiant energy? (3) Are BegoStone phantoms a suitable model for laser lithotripsy studies? Materials and Methods: The research questions were addressed by ablation experiments with BegoStone phantoms and native stones. Experiments were performed under three stone conditions: dry stones in air, hydrated stones in air, and hydrated stones in water. Single pulses with and without pulse modulation were applied. For each pulse mode, temporal profile, transmission through 1 mm water, and cavitation bubble collapse pressures were measured and compared. For each stone condition and pulse mode, stones were ablated with a fiber separation distance of 1 mm and crater volumes were measured using optical coherence tomography. Results: Pulses with and without pulse modulation had high (>80%) transmission through 1 mm of water. Pulses without pulse modulation generated much higher peak pressures than those with pulse modulation (62.3 vs 11.4 bar). Pulse modulation resulted in similar or larger craters than without pulse modulation. Trends in BegoStone crater volumes differed from trends in native stones. Conclusions: This results of this study suggest that the dominant mechanism is photothermal with possible photoacoustic contributions for some stone compositions. Pulse modulation can increase ablation volume per joule of emitted radiant energy, but the effect may be composition specific. BegoStones showed unique infrared ablation characteristics compared with native stones and are not a suitable model for laser lithotripsy studies.


Asunto(s)
Cálculos , Láseres de Estado Sólido , Litotripsia por Láser , Litotricia , Holmio , Humanos , Fantasmas de Imagen
4.
Phys Med Biol ; 65(16): 165017, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32320955

RESUMEN

PURPOSE: Early animal studies suggest that parotid gland (PG) toxicity prediction could be improved by an accurate estimation of the radiation dose to sub-regions of the PG. Translation to clinical investigation requires voxel-level dose accumulation in this organ that responds volumetrically throughout treatment. To date, deformable image registration (DIR) has been evaluated for the PG using only surface alignment. We sought to develop and evaluate an advanced DIR technique capable of modeling these complex PG volume changes over the course of radiation therapy. MATERIALS AND METHODS: Planning and mid-treatment magnetic resonance images from 19 patients and computed tomography images from nine patients who underwent radiation therapy for head and neck cancer were retrospectively evaluated. A finite element model (FEM)-based DIR algorithm was applied between the corresponding pairs of images, based on boundary conditions on the PG surfaces only (Morfeus-spatial). To investigate an anticipated improvement in accuracy, we added a population model-based thermal expansion coefficient to simulate the dose distribution effect on the volume change inside the glands (Morfeus-spatialDose). The model accuracy was quantified using target registration error for magnetic resonance images, where corresponding anatomical landmarks could be identified. The potential clinical impact was evaluated using differences in mean dose, median dose, D98, and D50 of the PGs. RESULTS: In the magnetic resonance images, the mean (±standard deviation) target registration error significantly reduced by 0.25 ± 0.38 mm (p = 0.01) when using Morfeus-spatialDose instead of Morfeus-spatial. In the computed tomography images, differences in the mean dose, median dose, D98, and D50 of the PGs reached 2.9 ± 0.8, 3.8, 4.1, and 3.8 Gy, respectively, between Morfeus-spatial and Morfeus-spatialDose. CONCLUSION: Differences between Morfeus-spatial and Morfeus-spatialDose may be impactful when considering high-dose gradients of radiation in the PGs. The proposed DIR model can allow more accurate PG alignment than the standard model and improve dose estimation and toxicity prediction modeling.


Asunto(s)
Algoritmos , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/radioterapia , Procesamiento de Imagen Asistido por Computador/métodos , Glándula Parótida/patología , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Glándula Parótida/efectos de la radiación , Estudios Prospectivos , Dosis de Radiación , Estudios Retrospectivos
5.
Phys Med Biol ; 64(17): 175018, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31269475

RESUMEN

During head and neck (HN) cancer radiation therapy, analysis of the dose-response relationship for the parotid glands (PG) relies on the ability to accurately align soft tissue organs between longitudinal images. In order to isolate the response of the salivary glands to delivered dose, from deformation due to patient position, it is important to resolve the patient postural changes, mainly due to neck flexion. In this study we evaluate the use of a biomechanical model-based deformable image registration (DIR) algorithm to estimate the displacements and deformations of the salivary glands due to postural changes. A total of 82 pairs of CT images of HN cancer patients with varying angles of neck flexion were retrospectively obtained. The pairs of CTs of each patient were aligned using bone-based rigid registration. The images were then deformed using biomechanical model-based DIR method that focused on the mandible, C1 vertebrae, C3 vertebrae, and external contour. For comparison, an intensity-based DIR was also performed. The accuracy of the biomechanical model-based DIR was assessed using Dice similarity coefficient (DSC) for all images and for the subset of images where the PGs had a volume change within 20%. The accuracy was compared to the intensity-based DIR. The PG mean ± STD DSC were 0.63 ± 0.18, 0.80 ± 0.08, and 0.82 ± 0.15 for the rigid registration, biomechanical model-based DIR, and intensity based DIR, respectively, for patients with a PG volume change up to 20%. For the entire cohort of patients, where the PG volume change was up to 57%, the PG mean ± STD DSC were 0.60 ± 0.18, 0.78 ± 0.09, and 0.81 ± 0.14 for the rigid registration, biomechanical model-based DIR, and intensity based DIR, respectively. The difference in DSC of the intensity and biomechanical model-based DIR methods was not statistically significant when the volume change was less than 20% (two-sided paired t-test, p  = 0.12). When all volume changes were considered, there was a significant difference between the two registration approaches, although the magnitude was small. These results demonstrate that the proposed biomechanical model with boundary conditions on the bony anatomy can serve to describe the varying angles of neck flexion appearing in images during radiation treatment and to align the salivary glands for proper analysis of dose-response relationships. It also motivates the need for dose response modeling following neck flexion for cases where parotid gland response is noted.


Asunto(s)
Neoplasias de Cabeza y Cuello/radioterapia , Procesamiento de Imagen Asistido por Computador/métodos , Cuello/diagnóstico por imagen , Planificación de la Radioterapia Asistida por Computador/métodos , Glándulas Salivales/diagnóstico por imagen , Algoritmos , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Humanos , Cuello/fisiopatología , Postura , Rango del Movimiento Articular
6.
J Vet Sci ; 10(3): 225-32, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19687623

RESUMEN

Accurate pre-operative localization and removal of disc material are important for minimizing morbidity in dogs with thoracolumbar disc extrusions. Computed tomography (CT) is an established technique for localizing disc extrusions in dogs, however the effect of multi-planar reformatting (MPR) on surgeon diagnostic performance has not been previously described. The purpose of this study was to test the effect of MPR CT on surgeon diagnostic accuracy, certainty and agreement for localizing thoracolumbar disc extrusions in dogs. Two veterinary surgeons and one veterinary neurologist who were unaware of surgical findings independently reviewed randomized sets of two-dimensional (2D) and MPR CT images from 111 dogs with confirmed thoracolumbar disc extrusions. For each set of images, readers recorded their localizations for extruded disc material and their diagnostic certainty. For MPR images, readers also recorded views they considered most helpful. Diagnostic accuracy estimates, mean diagnostic certainty scores and inter-observer agreement were compared using surgery as the gold standard. Frequencies were compared for MPR views rated most helpful. Diagnostic accuracy estimates were significantly greater for MPR vs. 2D CT images in one reader. Mean diagnostic certainty scores were significantly greater for MPR images in two readers. The change in agreement between 2D and MPR images differed from zero for all analyses (site, side, number affected) among all three readers. Multi-planar views rated most helpful with the highest frequency were oblique transverse and curved dorsal planar MPR views. Findings from this study indicate that multi-planar CT can improve surgeon diagnostic performance for localizing canine thoracolumbar disc extrusions.


Asunto(s)
Enfermedades de los Perros/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Desplazamiento del Disco Intervertebral/veterinaria , Animales , Toma de Decisiones , Perros , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/normas , Desplazamiento del Disco Intervertebral/diagnóstico por imagen , Masculino , Variaciones Dependientes del Observador , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA