Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nature ; 628(8008): 540-544, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600386

RESUMEN

The historic Barnett effect describes how an inertial body with otherwise zero net magnetic moment acquires spontaneous magnetization when mechanically spinning1,2. Breakthrough experiments have recently shown that an ultrashort laser pulse destroys the magnetization of an ordered ferromagnet within hundreds of femtoseconds3, with the spins losing angular momentum to circularly polarized optical phonons as part of the ultrafast Einstein-de Haas effect4,5. However, the prospect of using such high-frequency vibrations of the lattice to reciprocally switch magnetization in a nearby magnetic medium has not yet been experimentally explored. Here we show that the spontaneous magnetization gained temporarily by means of the ultrafast Barnett effect, through the resonant excitation of circularly polarized optical phonons in a paramagnetic substrate, can be used to permanently reverse the magnetic state of a heterostructure mounted atop the said substrate. With the handedness of the phonons steering the direction of magnetic switching, the ultrafast Barnett effect offers a selective and potentially universal method for exercising ultrafast non-local control over magnetic order.

2.
Nat Commun ; 14(1): 2208, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072420

RESUMEN

Magnetic materials play a vital role in energy-efficient data storage technologies, combining very fast switching with long-term retention of information. However, it has been shown that, at very short time scales, magnetisation dynamics become chaotic due to internal instabilities, resulting in incoherent spin-wave excitations that ultimately destroy magnetic ordering. Here, contrary to expectations, we show that such chaos gives rise to a periodic pattern of reversed magnetic domains, with a feature size far smaller than the spatial extent of the excitation. We explain this pattern as a result of phase-synchronisation of magnon-polaron quasiparticles, driven by strong coupling of magnetic and elastic modes. Our results reveal not only the peculiar formation and evolution of magnon-polarons at short time-scales, but also present an alternative mechanism of magnetisation reversal driven by coherent packets of short-wavelength magnetoelastic waves.

3.
Nat Commun ; 13(1): 7286, 2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36435872

RESUMEN

Despite recent significant progress in real-time, large-area computer-generated holography, its memory requirements and computational loads will be hard to tackle for several decades to come with the current paradigm based on a priori calculations and bit-plane writing to a spatial light modulator. Here we experimentally demonstrate a holistic approach to serial computation and repeatable writing of computer-generated dynamic holograms without Fourier transform, using minimal amounts of computer memory. We use the ultrafast opto-magnetic recording of holographic patterns in a ferrimagnetic film with femtosecond laser pulses, driven by the on-the-fly hardware computation of a single holographic point. The intensity-threshold nature of the magnetic medium allows sub-diffraction-limited, point-by-point toggling of arbitrarily localized magnetic spots on the sample, according to the proposed circular detour-phase encoding, providing complex modulation and symmetrical suppression of upper diffractive orders and conjugated terms in holographically reconstructed 3-D images.

4.
Rev Sci Instrum ; 93(4): 043007, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35489940

RESUMEN

Electromagnetic radiation in the mid- to far-infrared spectral range represents an indispensable tool for the study of numerous types of collective excitations in solids and molecules. Short and intense pulses in this terahertz spectral range are, however, difficult to obtain. While wide wavelength-tunability is easily provided by free-electron lasers, the energies of individual pulses are relatively moderate, on the order of microjoules. Here, we demonstrate a setup that uses cavity-dumping of a free-electron laser to provide single, picosecond-long pulses in the mid- to far-infrared frequency range. The duration of the Fourier-limited pulses can be varied by cavity detuning, and their energy was shown to exceed 100 µJ. Using the aforementioned infrared pulse as a pump, we have realized a two-color pump-probe setup facilitating single-shot time-resolved imaging of magnetization dynamics. We demonstrate the capabilities of the setup first on thermally induced demagnetization and magnetic switching of a GdFeCo thin film and second by showing a single-shot time-resolved detection of resonant phononic switching of the magnetization in a magnetic garnet.

5.
Sci Rep ; 11(1): 6576, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33753845

RESUMEN

Since the first experimental observation of all-optical switching phenomena, intensive research has been focused on finding suitable magnetic systems that can be integrated as storage elements within spintronic devices and whose magnetization can be controlled through ultra-short single laser pulses. We report here atomistic spin simulations of all-optical switching in multilayered structures alternating n monolayers of Tb and m monolayers of Co. By using a two temperature model, we numerically calculate the thermal variation of the magnetization of each sublattice as well as the magnetization dynamics of [[Formula: see text]/[Formula: see text]] multilayers upon incidence of a single laser pulse. In particular, the condition to observe thermally-induced magnetization switching is investigated upon varying systematically both the composition of the sample (n,m) and the laser fluence. The samples with one monolayer of Tb as [[Formula: see text]/[Formula: see text]] and [[Formula: see text]/[Formula: see text]] are showing thermally induced magnetization switching above a fluence threshold. The reversal mechanism is mediated by the residual magnetization of the Tb lattice while the Co is fully demagnetized in agreement with the models developed for ferrimagnetic alloys. The switching is however not fully deterministic but the error rate can be tuned by the damping parameter. Increasing the number of monolayers the switching becomes completely stochastic. The intermixing at the Tb/Co interfaces appears to be a promising way to reduce the stochasticity. These results predict for the first time the possibility of TIMS in [Tb/Co] multilayers and suggest the occurrence of sub-picosecond magnetization reversal using single laser pulses.

6.
J Phys Condens Matter ; 33(13): 135804, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33527913

RESUMEN

We study the demagnetization dynamics of the fully compensated half-metallic ferrimagnet Mn2Ru x Ga. While the two antiferromagnetically coupled sublattices are both composed of manganese, they exhibit different temperature dependencies due to their differing local environments. The sublattice magnetization dynamics triggered by femtosecond laser pulses are studied to reveal the roles played by the spin and intersublattice exchange. We find a two-step demagnetization process, similar to the well-established case of Gd(FeCo)3, where on a 5 ps timescale the two Mn-sublattices seem to have different demagnetization rates. The behaviour is analysed using a four-temperature model, assigning different temperatures to the two manganese spin baths. Even in this strongly exchange-coupled system, the two spin reservoirs have considerably different behaviour. The half-metallic nature and strong exchange coupling of Mn2Ru x Ga lead to spin angular momentum conservation at much shorter time scales than found for Gd(FeCo)3 which suggests that low-power, sub-picosecond switching of the net moment of Mn2Ru x Ga is possible.

7.
J Phys Condens Matter ; 33(7): 075802, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33171456

RESUMEN

Using the technique of double high-speed photography, we find that a femtosecond laser pulse is able to change the velocity of a moving domain wall in an yttrium iron garnet. The change depends on the light intensity and the domain wall velocity itself. To explain the results we propose a model in which the domain wall velocity is controlled by photo-induced generation of vertical Bloch lines.

8.
Sci Rep ; 10(1): 5211, 2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32251329

RESUMEN

Ever since the first observation of all-optical switching of magnetization in the ferrimagnetic alloy GdFeCo using femtosecond laser pulses, there has been significant interest in exploiting this process for data-recording applications. In particular, the ultrafast speed of the magnetic reversal can enable the writing speeds associated with magnetic memory devices to be potentially pushed towards THz frequencies. This work reports the development of perpendicular magnetic tunnel junctions incorporating a stack of Tb/Co nanolayers whose magnetization can be all-optically controlled via helicity-independent single-shot switching. Toggling of the magnetization of the Tb/Co electrode was achieved using either 60 femtosecond-long or 5 picosecond-long laser pulses, with incident fluences down to 3.5 mJ/cm2, for Co-rich compositions of the stack either in isolation or coupled to a CoFeB-electrode/MgO-barrier tunnel-junction stack. Successful switching of the CoFeB-[Tb/Co] electrodes was obtained even after annealing at 250 °C. After integration of the [Tb/Co]-based electrodes within perpendicular magnetic tunnel junctions yielded a maximum tunneling magnetoresistance signal of 41% and RxA value of 150 Ωµm2 with current-in-plane measurements and ratios between 28% and 38% in nanopatterned pillars. These results represent a breakthrough for the development of perpendicular magnetic tunnel junctions controllable using single laser pulses, and offer a technologically-viable path towards the realization of hybrid spintronic-photonic systems featuring THz switching speeds.

9.
Nat Commun ; 10(1): 4786, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31636269

RESUMEN

All-optical magnetization reversal with femtosecond laser pulses facilitates the fastest and least dissipative magnetic recording, but writing magnetic bits with spatial resolution better than the wavelength of light has so far been seen as a major challenge. Here, we demonstrate that a single femtosecond laser pulse of wavelength 800 nm can be used to toggle the magnetization exclusively within one of two 10-nm thick magnetic nanolayers, separated by just 80 nm, without affecting the other one. The choice of the addressed layer is enabled by the excitation of a plasmon-polariton at a targeted interface of the nanostructure, and realized merely by rotating the polarization-axis of the linearly-polarized ultrashort optical pulse by 90°. Our results unveil a robust tool that can be deployed to reliably switch magnetization in targeted nanolayers of heterostructures, and paves the way to increasing the storage density of opto-magnetic recording by a factor of at least 2.

10.
Sud Med Ekspert ; 62(2): 34-39, 2019.
Artículo en Ruso | MEDLINE | ID: mdl-31213590

RESUMEN

This article is focused on the conditions for the detection and identification of 2-[4-bromo-2.5-dimethoxyl]-N-[(2-methoxyphenyl)methyl] ethamine (25B-NBOMe) and its major metabolites by the combination of the HPLC/MS/MS techniques. The high-resolution mass spectra obtained with the use of a linear ion trap are described. The results of the study give evidence of the possibility for the detection of the analytes within 24 hours after drug consumption and within 3 months after the storage of the biological material of interest in a refrigerator at a temperature of 3-5 °C. The data obtained confirmed high stability of 2-(4-bromo-2.5-dimethoxyl]-N-[(2-methoxyphenyl)methyl] ethamine and its metabolites in the biological tissues.


Asunto(s)
Anisoles/análisis , Cromatografía Líquida de Alta Presión , Ciencias Forenses/métodos , Fenetilaminas/análisis , Espectrometría de Masas en Tándem
11.
Nat Commun ; 10(1): 1756, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30988403

RESUMEN

Sub-picosecond magnetisation manipulation via femtosecond optical pumping has attracted wide attention ever since its original discovery in 1996. However, the spatial evolution of the magnetisation is not yet well understood, in part due to the difficulty in experimentally probing such rapid dynamics. Here, we find evidence of a universal rapid magnetic order recovery in ferrimagnets with perpendicular magnetic anisotropy via nonlinear magnon processes. We identify magnon localisation and coalescence processes, whereby localised magnetic textures nucleate and subsequently interact and grow in accordance with a power law formalism. A hydrodynamic representation of the numerical simulations indicates that the appearance of noncollinear magnetisation via optical pumping establishes exchange-mediated spin currents with an equivalent 100% spin polarised charge current density of 107 A cm-2. Such large spin currents precipitate rapid recovery of magnetic order after optical pumping. The magnon processes discussed here provide new insights for the stabilization of desired meta-stable states.

12.
Phys Rev Lett ; 122(2): 027202, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30720301

RESUMEN

A heat-assisted route for subnanosecond magnetic recording is discovered for the dielectric bismuth-substituted yttrium iron garnet, known for possessing small magnetic damping. The experiments and simulations reveal that the route involves nonlinear magnetization precession, triggered by a transient thermal modification of the growth-induced crystalline anisotropy in the presence of a fixed perpendicular magnetic field. The pathway is rendered robust by the damping becoming anomalously large during the switching process. Subnanosecond deterministic magnetization reversal was achieved within just one-half of a precessional period, and this mechanism should be possible to implement in any material with suitably engineered dissimilar thermal derivatives of magnetization and anisotropy.

13.
Nat Commun ; 10(1): 612, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30723207

RESUMEN

Rapid growth of the area of ultrafast magnetism has allowed to achieve a substantial progress in all-optical magnetic recording with femtosecond laser pulses and triggered intense discussions about microscopic mechanisms responsible for this phenomenon. The typically used metallic medium nevertheless considerably limits the applications because of the unavoidable heat dissipation. In contrast, the recently demonstrated photo-magnetic recording in transparent dielectric garnet for all practical purposes is dissipation-free. This discovery raised question about selection rules, i.e. the optimal wavelength and the polarization of light, for such a recording. Here we report the computationally and experimentally identified workspace of parameters allowing photo-magnetic recording in Co-doped iron garnet using femtosecond laser pulses. The revealed selection rules indicate that the excitations responsible for the coupling of light to spins are d-d electron transitions in octahedral and tetrahedral Co-sublattices, respectively.

14.
J Phys Condens Matter ; 30(49): 494003, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30451159

RESUMEN

We recorded IR spectra for neutral cobalt clusters via two-color IR-UV ionization, using the Free Electron Laser for intracavity experiments (FELICE). Well-resolved IR spectra are presented for [Formula: see text] (n = 4-10, 13) and analyzed with the help of Density Functional Theory calculations using two different correlation exchange functionals: the revisited Tao-Perdew-Staroverov-Scuseria (revTPSS) and the frequently used Perdew-Burke-Ernzerhof (PBE) approaches. Although we have not performed an extensive structure search, we tentatively assign the spectra for all cluster sizes except for n = 7, and n = 10. We find that neither of the two functionals chosen clearly outperforms the other in predicting IR spectra, and that relatively low scaling factors of 0.82 (PBE) and 0.8 (revTPSS) are required. In contrast to the magnetic moments, the calculated electric dipole moments fluctuate strongly as a function of cluster size and could therefore be used as an indirect probe to the cluster structure.

15.
J Phys Condens Matter ; 29(33): 335801, 2017 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-28639558

RESUMEN

Magnetism of transition metal (TM) oxides is usually described in terms of the Heisenberg model, with orientation-independent interactions between the spins. However, the applicability of such a model is not fully justified for TM oxides because spin polarization of oxygen is usually ignored. In the conventional model based on the Anderson principle, oxygen effects are considered as a property of the TM ion and only TM interactions are relevant. Here, we perform a systematic comparison between two approaches for spin polarization on oxygen in typical TM oxides. To this end, we calculate the exchange interactions in NiO, MnO and hematite (Fe2O3) for different magnetic configurations using the magnetic force theorem. We consider the full spin Hamiltonian including oxygen sites, and also derive an effective model where the spin polarization on oxygen renormalizes the exchange interactions between TM sites. Surprisingly, the exchange interactions in NiO depend on the magnetic state if spin polarization on oxygen is neglected, resulting in non-Heisenberg behavior. In contrast, the inclusion of spin polarization in NiO makes the Heisenberg model more applicable. Just the opposite, MnO behaves as a Heisenberg magnet when oxygen spin polarization is neglected, but shows strong non-Heisenberg effects when spin polarization on oxygen is included. In hematite, both models result in non-Heisenberg behavior. The general applicability of the magnetic force theorem as well as the Heisenberg model to TM oxides is discussed.

16.
J Phys Condens Matter ; 29(22): 224003, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28474601

RESUMEN

Excitation of antiferromagnetic HoFeO3 with a single 80 fs laser pulse triggers a first-order spin-reorientation phase transition. In the ultrafast kinetics of the transition one can distinguish the processes of impulsive excitation of spin precession, nucleation of the new domain and growth of the nuclei. The orientation of the spins in the nuclei is defined by the phase of the laser-induced coherent spin precession. The growth of the nuclei is further promoted by heating induced by the laser excitation. Hereby we demonstrate that in HoFeO3 coherent control of the spin precession allows an effective control of the route of the heat-induced first-order magnetic phase transition. The theoretical description of the excitation of the spin precession by linearly-polarized ultrashort laser pulses is developed with the sigma model. The analysis showed high sensitivity of the excited dynamics to the initial spin orientations with respect to the crystallographic axes of the material.

17.
Phys Rev Lett ; 118(11): 117203, 2017 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28368648

RESUMEN

We show that applying magnetic fields up to 30 T has a dramatic effect on the ultrafast spin dynamics in ferrimagnetic GdFeCo. Upon increasing the field beyond a critical value, the dynamics induced by a femtosecond laser excitation strongly increases in amplitude and slows down significantly. Such a change in spin response is explained by different dynamics of the Gd and FeCo magnetic sublattices following a spin-flop phase transition from a collinear to a noncollinear spin state.

18.
J Phys Condens Matter ; 29(16): 164004, 2017 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-28323634

RESUMEN

Light propagation effects can strongly influence the excitation and the detection of laser-induced magnetization dynamics. We investigated experimentally and analytically the effects of crystallographic linear birefringence on the excitation and detection of ultrafast magnetization dynamics in the rare-earth orthoferrites (Sm0.5Pr0.5)FeO3 and (Sm0.55Tb0.45)FeO3, which possess weak and strong linear birefringence, respectively. Our finding is that the effect of linear birefringence on the result of a magneto-optical pump-probe experiment strongly depends on the mechanism of excitation. When magnetization dynamics, probed by means of the Faraday effect, is excited via a rapid, heat-induced phase transition, the measured rotation of the probe pulse polarization is strongly suppressed due to the birefringence. This contrasts with the situation for magnetization dynamics induced by the ultrafast inverse Faraday effect, where the corresponding probe polarization rotation values were larger in the orthoferrite with strong linear birefringence. We show that this striking difference results from an interplay between the polarization transformations experienced by pump and probe pulses in the birefringent medium.

19.
Nature ; 542(7639): 71-74, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28099412

RESUMEN

Discovering ways to control the magnetic state of media with the lowest possible production of heat and at the fastest possible speeds is important in the study of fundamental magnetism, with clear practical potential. In metals, it is possible to switch the magnetization between two stable states (and thus to record magnetic bits) using femtosecond circularly polarized laser pulses. However, the switching mechanisms in these materials are directly related to laser-induced heating close to the Curie temperature. Although several possible routes for achieving all-optical switching in magnetic dielectrics have been discussed, no recording has hitherto been demonstrated. Here we describe ultrafast all-optical photo-magnetic recording in transparent films of the dielectric cobalt-substituted garnet. A single linearly polarized femtosecond laser pulse resonantly pumps specific d-d transitions in the cobalt ions, breaking the degeneracy between metastable magnetic states. By changing the polarization of the laser pulse, we deterministically steer the net magnetization in the garnet, thus writing '0' and '1' magnetic bits at will. This mechanism outperforms existing alternatives in terms of the speed of the write-read magnetic recording event (less than 20 picoseconds) and the unprecedentedly low heat load (less than 6 joules per cubic centimetre).

20.
J Chem Phys ; 145(16): 164305, 2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27802629

RESUMEN

We report experimental vibrational spectra of small neutral niobium carbide clusters in the 350-850 cm-1 spectral range. Clusters were first irradiated by IR light and subsequently probed using UV light with photon energies just below the ionization threshold. Upon resonance with an IR vibrational mode, the number of cluster ions increases, allowing to record a vibrational spectrum. In complementary density functional theory calculations, we have simulated the IR spectra for several low-energy isomers. We were able to assign the spectra experimentally obtained for each cluster size to a specific geometric structure based on the match with the computed spectra. The number of the cluster sizes investigated here allows to follow the evolution of the geometric structure of the niobium and carbon components of clusters separately. For Nb6Cm (m = 4, 5, 6), we observe the emergence of the cubic crystal structures similar to the bulk.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA