Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
J Radiosurg SBRT ; 9(2): 91-99, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39087065

RESUMEN

Purpose: To investigate whether TP53 variants may be correlated with overall survival and local control following stereotactic radiosurgery (SRS) for brain metastases (BMs) from non-small cell lung cancer (NSCLC). Methods: Patients undergoing an initial course of SRS for NSCLC brain metastases between 1/2015 and 12/2020 were retrospectively identified. Overall survival and freedom from local intracranial progression (FFLIP) were estimated via Kaplan-Meier method. Cox models assessed TP53 variant status (pathogenic variant, PV; variant not detected, ND). Results: 255 patients underwent molecular profiling for TP53, among whom 144 (56%) had a TP53 PV. Median follow-up was 11.6 months. OS was not significantly different across TP53 status. A trend toward superior FFLIP was observed for PV (95% CI 62.9 months-NR) versus ND patients (95% CI 29.4 months-NR; p=0.06). Superior FFLIP was observed for patients with one TP53 variant versus those with TP53 ND. Conclusion: Among NSCLC patients with BMs, the potential association between TP53 status and post-SRS FFLIP warrants further investigation in a larger prospective cohort.

2.
Cancer Treat Rev ; 130: 102807, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39151281

RESUMEN

Up to 40% of patients with non-small cell lung cancer (NSCLC) develop central nervous system (CNS) metastases. Current treatments for this subgroup of patients with advanced NSCLC include local therapies (surgery, stereotactic radiosurgery, and, less frequently, whole-brain radiotherapy), targeted therapies for oncogene-addicted NSCLC (small molecules, such as tyrosine kinase inhibitors, and antibody-drug conjugates), and immune checkpoint inhibitors (as monotherapy or combination therapy), with multiple new drugs in development. However, confirming the intracranial activity of these treatments has proven to be challenging, given that most lung cancer clinical trials exclude patients with untreated and/or progressing CNS metastases, or do not include prespecified CNS-related endpoints. Here we review progress in the treatment of patients with CNS metastases originating from NSCLC, examining local treatment options, systemic therapies, and multimodal therapeutic strategies. We also consider challenges regarding assessment of treatment response and provide thoughts around future directions for managing CNS disease in patients with advanced NSCLC.

3.
Sci Adv ; 10(25): eadm9404, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38896613

RESUMEN

In the quest for new bioactive substances, nonribosomal peptide synthetases (NRPS) provide biodiversity by synthesizing nonproteinaceous peptides with high cellular activity. NRPS machinery consists of multiple modules, each catalyzing a unique series of chemical reactions. Incomplete understanding of the biophysical principles orchestrating these reaction arrays limits the exploitation of NRPSs in synthetic biology. Here, we use nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry to solve the conundrum of how intermodular recognition is coupled with loaded carrier protein specificity in the tomaymycin NRPS. We discover an adaptor domain that directly recruits the loaded carrier protein from the initiation module to the elongation module and reveal its mechanism of action. The adaptor domain of the type found here has specificity rules that could potentially be exploited in the design of engineered NRPS machinery.


Asunto(s)
Péptido Sintasas , Péptido Sintasas/metabolismo , Péptido Sintasas/química , Especificidad por Sustrato , Dominios Proteicos , Unión Proteica , Espectroscopía de Resonancia Magnética/métodos
4.
Adv Radiat Oncol ; 9(6): 101475, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38690297

RESUMEN

Purpose: Clinical and imaging surveillance of patients with brain metastases is important after stereotactic radiosurgery (SRS) because many will experience intracranial progression (ITCP) requiring multidisciplinary management. The prognostic significance of neurologic symptoms at the time of ITCP is poorly understood. Methods and Materials: This was a multi-institutional, retrospective cohort study from 2015 to 2020, including all patients with brain metastases completing an initial course of SRS. The primary outcome was overall survival (OS) by presence of neurologic symptoms at ITCP. OS, freedom from ITCP (FF-ITCP), and freedom from symptomatic ITCP (FF-SITCP) were assessed via Kaplan-Meier method. Cox proportional hazard models tested parameters impacting FF-ITCP and FF-SITCP. Results: Among 1383 patients, median age was 63.4 years, 55% were female, and common primaries were non-small cell lung (49%), breast (15%), and melanoma (9%). At a median follow-up of 8.72 months, asymptomatic and symptomatic ITCP were observed in 504 (36%) and 194 (14%) patients, respectively. The majority of ITCP were distant ITCP (79.5%). OS was worse with SITCP (median, 10.2 vs 17.9 months, P < .001). SITCP was associated with clinical factors including total treatment volume (P = .012), melanoma histology (P = .001), prior whole brain radiation therapy (P = .003), number of brain metastases (P < .001), interval of 1 to 2 years from primary and brain metastasis diagnosis (P = .012), controlled extracranial disease (P = .042), and receipt of pre-SRS chemotherapy (P = .015). Patients who were younger and received post-SRS chemotherapy (P = .001), immunotherapy (P < .001), and targeted or small-molecule inhibitor therapy (P < .026) had better FF-SITCP. Conclusions: In this cohort study of patients with brain metastases completing SRS, neurologic symptoms at ITCP is prognostic for OS. This data informs post-SRS surveillance in clinical practice as well as future prospective studies needed in the modern management of brain metastases.

5.
J Neurooncol ; 167(1): 219-227, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340295

RESUMEN

PURPOSE: During stereotactic radiosurgery (SRS) planning for brain metastases (BM), brain MRIs are reviewed to select appropriate targets based on radiographic characteristics. Some BM are difficult to detect and/or definitively identify and may go untreated initially, only to become apparent on future imaging. We hypothesized that in patients receiving multiple courses of SRS, reviewing the initial planning MRI would reveal early evidence of lesions that developed into metastases requiring SRS. METHODS: Patients undergoing two or more courses of SRS to BM within 6 months between 2016 and 2018 were included in this single-institution, retrospective study. Brain MRIs from the initial course were reviewed for lesions at the same location as subsequently treated metastases; if present, this lesion was classified as a "retrospectively identified metastasis" or RIM. RIMs were subcategorized as meeting or not meeting diagnostic imaging criteria for BM (+ DC or -DC, respectively). RESULTS: Among 683 patients undergoing 923 SRS courses, 98 patients met inclusion criteria. There were 115 repeat courses of SRS, with 345 treated metastases in the subsequent course, 128 of which were associated with RIMs found in a prior MRI. 58% of RIMs were + DC. 17 (15%) of subsequent courses consisted solely of metastases associated with + DC RIMs. CONCLUSION: Radiographic evidence of brain metastases requiring future treatment was occasionally present on brain MRIs from prior SRS treatments. Most RIMs were + DC, and some subsequent SRS courses treated only + DC RIMs. These findings suggest enhanced BM detection might enable earlier treatment and reduce the need for additional SRS.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Humanos , Radiocirugia/métodos , Estudios Retrospectivos , Incidencia , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patología , Imagen por Resonancia Magnética
6.
Adv Radiat Oncol ; 9(1): 101320, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38260227

RESUMEN

Purpose: Genetic variants affecting the radiation response protein ataxia-telangiectasia mutated (ATM) have been associated with increased adverse effects of radiation but also with improved local control after conventional radiation therapy. However, it is unknown whether ATM variants affect rates of radionecrosis (RN) and local intracranial progression (LIP) after stereotactic radiosurgery (SRS) for brain metastases. Methods and Materials: Patients undergoing an initial course of SRS for non-small cell lung cancer (NSCLC) brain metastases at a single institution were retrospectively identified. Kaplan-Meier estimates were calculated and Cox proportional hazards testing was performed based on ATM variant status. Results: A total of 541 patients completed SRS for brain metastasis secondary to NSCLC, of whom 260 completed molecular profiling. Variants of ATM were identified in 36 cases (13.8%). Among patients who completed molecular profiling, RN incidence was 4.9% (95% CI, 1.6%-8.2%) at 6 months and 9.9% (95% CI, 4.8%-15.0%) at 12 months. Incidence of RN was not significantly increased among patients with ATM variants, with an RN incidence of 5.3% (95% CI, 0.0%-15.3%) at both 6 and 12 months (P = .46). For all patients who completed genomic profiling, LIP was 5.4% (95% CI, 2.4%-8.4%) at 6 months and 9.8% (5.5%-14.1%) at 12 months. A significant improvement in LIP was not detected among patients with ATM variants, with an LIP incidence of 3.1% (0.0%-9.1%) at both 6 and 12 months (P = .26). Although differences according to ATM variant type (pathologic variant or variant of unknown significance) did not reach significance, no patients with ATM pathologic variants experienced LIP. Conclusions: We did not detect significant associations between ATM variant status and RN or LIP after SRS for NSCLC brain metastases. The current data set allows estimation of patient cohort sizes needed to power future investigations to identify genetic variants that associate with significant differences in outcomes after SRS.

7.
Int J Radiat Oncol Biol Phys ; 118(5): 1507-1518, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38097090

RESUMEN

PURPOSE: The intracranial benefit of offering dual immune-checkpoint inhibition (D-ICPI) with ipilimumab and nivolumab to patients with melanoma or non-small cell lung cancer (NSCLC) receiving stereotactic radiosurgery (SRS) for brain metastases (BMs) is unknown. We hypothesized that D-ICPI improves local control compared with SRS alone. METHODS AND MATERIALS: Patients with melanoma or NSCLC treated with SRS from 2014 to 2022 were evaluated. Patients were stratified by treatment with D-ICPI, single ICPI (S-ICPI), or SRS alone. Local recurrence, intracranial progression (IP), and overall survival were estimated using competing risk and Kaplan-Meier analyses. IP included both local and distant intracranial recurrence. RESULTS: Two hundred eighty-eight patients (44% melanoma, 56% NSCLC) with 1,704 BMs were included. Fifty-three percent of patients had symptomatic BMs. The median follow-up was 58.8 months. Twelve-month local control rates with D-ICPI, S-ICPI, and SRS alone were 94.73% (95% CI, 91.11%-96.90%), 91.74% (95% CI, 89.30%-93.64%), and 88.26% (95% CI, 84.07%-91.41%). On Kaplan-Meier analysis, only D-ICPI was significantly associated with reduced local recurrence (P = .0032). On multivariate Cox regression, D-ICPI (hazard ratio [HR], 0.4003; 95% CI, 0.1781-0.8728; P = .0239) and planning target volume (HR, 1.022; 95% CI, 1.004-1.035; P = .0059) correlated with local control. One hundred seventy-three (60%) patients developed IP. The 12-month cumulative incidence of IP was 41.27% (95% CI, 30.27%-51.92%), 51.86% (95% CI, 42.78%-60.19%), and 57.15% (95% CI, 44.98%-67.59%) after D-ICPI, S-ICPI, and SRS alone. On competing risk analysis, only D-ICPI was significantly associated with reduced IP (P = .0408). On multivariate Cox regression, D-ICPI (HR, 0.595; 95% CI, 0.373-0.951; P = .0300) and presentation with >10 BMs (HR, 2.492; 95% CI, 1.668-3.725; P < .0001) remained significantly correlated with IP. The median overall survival after D-ICPI, S-ICPI, and SRS alone was 26.1 (95% CI, 15.5-40.7), 21.5 (16.5-29.6), and 17.5 (11.3-23.8) months. S-ICPI, fractionation, and histology were not associated with clinical outcomes. There was no difference in hospitalizations or neurologic adverse events between cohorts. CONCLUSIONS: The addition of D-ICPI for patients with melanoma and NSCLC undergoing SRS is associated with improved local and intracranial control. This appears to be an effective strategy, including for patients with symptomatic or multiple BMs.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Melanoma , Radiocirugia , Humanos , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Melanoma/radioterapia , Inhibidores de Puntos de Control Inmunológico , Radiocirugia/métodos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/etiología , Estudios Retrospectivos , Neoplasias Encefálicas/secundario
8.
Methods Mol Biol ; 2705: 3-23, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37668966

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique to solve the structure of biomolecular complexes at atomic resolution in solution. Small proteins such as Src-homology 2 (SH2) domains have fast tumbling rates and long-lived NMR signals, making them particularly suited to be studied by standard NMR methods. SH2 domains are modular proteins whose function is the recognition of sequences containing phosphotyrosines. In this chapter, we describe the application of NMR to assess the interaction between SH2 domains and phosphopeptides and determine the structure of the resulting complexes.


Asunto(s)
Fosfopéptidos , Dominios Homologos src , Imagen por Resonancia Magnética , Fosfotirosina , Espectroscopía de Resonancia Magnética
9.
Methods Mol Biol ; 2705: 25-37, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37668967

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy is the method of choice for studying the dynamics of biological macromolecules in solution. By exploiting the intricate interplay between the effects of protein motion (both overall rotational diffusion and internal mobility) and nuclear spin relaxation, NMR allows molecular motion to be probed at atomic resolution over a wide range of timescales, including picosecond (bond vibrations and methyl-group rotations), nanosecond (loop motions and rotational diffusion), and microsecond-millisecond (ligand binding, allostery). In this chapter, we describe different NMR pulse schemes (R1, R1ρ, heteronuclear NOE, and CPMG relaxation dispersion) to characterize the dynamics of SH2 domains. As an example, we use the N-SH2 domain of protein tyrosine phosphatase SHP2 in complex with two phosphopeptides derived from immune checkpoint receptor PD-1 (ITIM and ITSM).


Asunto(s)
Fosfopéptidos , Dominios Homologos src , Imagen por Resonancia Magnética , Difusión , Espectroscopía de Resonancia Magnética
10.
Neurooncol Adv ; 5(1): vdad097, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37706200

RESUMEN

Background: Primary central nervous system lymphoma (PCNSL) is an aggressive diffuse large B-cell lymphoma. Treatment approaches are historically associated with neurotoxicity, particularly with high-dose whole-brain radiotherapy (WBRT). We hypothesized that reduced dose-WBRT (rd-WBRT) followed by a stereotactic radiosurgery (SRS) boost could provide durable disease control without significant adverse effects. Methods: We retrospectively reviewed PCNSL patients treated with rd-WBRT plus an SRS boost at Duke University between 2008 and 2021. Progression-free survival and overall survival (OS) were estimated using competing risk and Kaplan-Meier methods. Results: We identified 23 patients with pathologically confirmed PCNSL. Median age at diagnosis was 69 years (Q1Q3: 52-74) and median Karnofsky Performance Scale (KPS) was 80 (Q1Q3: 70-80). Median follow-up was 21 months. Median doses for rd-WBRT and SRS were 23.4 Gy (Q1Q3: 23.4-23.4) and 12 Gy (Q1Q3: 12-12.5), respectively. The cumulative incidence of intracranial progression at 2 years was 23% (95% CI: 8-42). Six patients (26%) developed distant radiographic progression while 2 patients (9%) developed both distant and local progression. Ten patients (44%) were alive without progression at last follow-up. By Kaplan-Meier estimate, the 2-year OS was 69% (95% CI: 46-84). There were no reported grade 3 + radiation-induced toxicities. Conclusions: The combination of rd-WBRT with an SRS boost appears well-tolerated with durable intracranial control. This approach may represent a treatment option for select patients, such as those with progressive or refractory disease. Further prospective studies are needed to validate these findings and determine whether this approach could be incorporated into consolidation strategies.

11.
Cancers (Basel) ; 15(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37173897

RESUMEN

Radiation necrosis, also known as treatment-induced necrosis, has emerged as an important adverse effect following stereotactic radiotherapy (SRS) for brain metastases. The improved survival of patients with brain metastases and increased use of combined systemic therapy and SRS have contributed to a growing incidence of necrosis. The cyclic GMP-AMP (cGAMP) synthase (cGAS) and stimulator of interferon genes (STING) pathway (cGAS-STING) represents a key biological mechanism linking radiation-induced DNA damage to pro-inflammatory effects and innate immunity. By recognizing cytosolic double-stranded DNA, cGAS induces a signaling cascade that results in the upregulation of type 1 interferons and dendritic cell activation. This pathway could play a key role in the pathogenesis of necrosis and provides attractive targets for therapeutic development. Immunotherapy and other novel systemic agents may potentiate activation of cGAS-STING signaling following radiotherapy and increase necrosis risk. Advancements in dosimetric strategies, novel imaging modalities, artificial intelligence, and circulating biomarkers could improve the management of necrosis. This review provides new insights into the pathophysiology of necrosis and synthesizes our current understanding regarding the diagnosis, risk factors, and management options of necrosis while highlighting novel avenues for discovery.

12.
Adv Radiat Oncol ; 8(4): 101211, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152484

RESUMEN

Purpose: Existing brain metastasis prognostic models do not identify patients at risk of very poor survival after radiation therapy (RT). Identifying patient and disease risk factors for 30-day mortality (30-DM) after RT may help identify patients who would not benefit from RT. Methods and Materials: All patients who received stereotactic radiosurgery (SRS) or whole-brain RT (WBRT) for brain metastases from January 1, 2017, to September 30, 2020, at a single tertiary care center were included. Variables regarding demographics, systemic and intracranial disease characteristics, symptoms, RT, palliative care, and death were recorded. Thirty-day mortality was defined as death within 30 days of RT completion. The Kaplan-Meier method was used to estimate median overall survival. Univariate and multivariable logistic regression models were used to assess associations between demographic, tumor, and treatment factors and 30-DM. Results: A total of 636 patients with brain metastases were treated with either WBRT (n = 117) or SRS (n = 519). The most common primary disease types were non-small cell lung (46.7%) and breast (19.8%) cancer. Median survival time was 6 months (95% CI, 5-7 months). Of the 636 patients, 75 (11.7%) died within 30 days of RT. On multivariable analysis, progressive intrathoracic disease (hazard ratio [HR], 4.67; 95% CI, 2.06-10.60; P = .002), progressive liver and/or adrenal metastases (HR, 2.20; 95% CI, 1.16-3.68; P = .02), and inpatient status (HR, 4.51; 95% CI, 1.78-11.42; P = .002) were associated with dying within 30 days of RT. A higher Karnofsky Performance Status (KPS) score (HR, 0.95; 95% CI, 0.93-0.97; P < .001), synchronous brain metastases at time of initial diagnosis (HR, 0.45; 95% CI, 0.21-0.96; P = .04), and outpatient palliative care utilization (HR, 0.45; 95% CI, 0.20-1.00; P = .05) were associated with surviving more than 30 days after RT. Conclusions: Multiple factors including a lower KPS, progressive intrathoracic disease, progressive liver and/or adrenal metastases, and inpatient status were associated with 30-DM after RT. A higher KPS, brain metastases at initial diagnosis, and outpatient palliative care utilization were associated with survival beyond 30 days. These data may aid in identifying which patients may benefit from brain metastasis-directed RT.

13.
JAMA Netw Open ; 6(4): e2310117, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37099292

RESUMEN

Importance: Clinical trials for metastatic malignant neoplasms are increasingly being extended to patients with brain metastases. Despite the preeminence of progression-free survival (PFS) as a primary oncologic end point, the correlation of intracranial progression (ICP) and extracranial progression (ECP) events with overall survival (OS) is poorly understood for patients with brain metastases following stereotactic radiosurgery (SRS). Objective: To determine the correlation of ICP and ECP with OS among patients with brain metastases completing an initial SRS course. Design, Setting, and Participants: This multi-institutional retrospective cohort study was conducted from January 1, 2015, to December 31, 2020. We included patients who completed an initial course of SRS for brain metastases during the study period, including receipt of single and/or multifraction SRS, prior whole-brain radiotherapy, and brain metastasis resection. Data analysis was performed on November 15, 2022. Exposures: Non-OS end points included intracranial PFS, extracranial PFS, PFS, time to ICP, time to ECP, and any time to progression. Progression events were radiologically defined, incorporating multidisciplinary clinical consensus. Main Outcomes and Measures: The primary outcome was correlation of surrogate end points to OS. Clinical end points were estimated from time of SRS completion via the Kaplan-Meier method, while end-point correlation to OS was measured using normal scores rank correlation with the iterative multiple imputation approach. Results: This study included 1383 patients, with a mean age of 63.1 years (range, 20.9-92.8 years) and a median follow-up of 8.72 months (IQR, 3.25-19.68 months). The majority of participants were White (1032 [75%]), and more than half (758 [55%]) were women. Common primary tumor sites included the lung (757 [55%]), breast (203 [15%]), and skin (melanoma; 100 [7%]). Intracranial progression was observed in 698 patients (50%), preceding 492 of 1000 observed deaths (49%). Extracranial progression was observed in 800 patients (58%), preceding 627 of 1000 observed deaths (63%). Irrespective of deaths, 482 patients (35%) experienced both ICP and ECP, 534 (39%) experienced ICP (216 [16%]) or ECP (318 [23%]), and 367 (27%) experienced neither. The median OS was 9.93 months (95% CI, 9.08-11.05 months). Intracranial PFS had the highest correlation with OS (ρ = 0.84 [95% CI, 0.82-0.85]; median, 4.39 months [95% CI, 4.02-4.92 months]). Time to ICP had the lowest correlation with OS (ρ = 0.42 [95% CI, 0.34-0.50]) and the longest median time to event (median, 8.76 months [95% CI, 7.70-9.48 months]). Across specific primary tumor types, correlations of intracranial PFS and extracranial PFS with OS were consistently high despite corresponding differences in median outcome durations. Conclusions and Relevance: The results of this cohort study of patients with brain metastases completing SRS suggest that intracranial PFS, extracranial PFS, and PFS had the highest correlations with OS and time to ICP had the lowest correlation with OS. These data may inform future patient inclusion and end-point selection for clinical trials.


Asunto(s)
Neoplasias Encefálicas , Melanoma , Radiocirugia , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios de Cohortes , Estudios Retrospectivos , Neoplasias Encefálicas/secundario
14.
Adv Radiat Oncol ; 8(2): 101166, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845614

RESUMEN

Purpose: Hypofractionated stereotactic radiosurgery (HF-SRS) with or without surgical resection is potentially a preferred treatment for larger or symptomatic brain metastases (BMs). Herein, we report clinical outcomes and predictive factors following HF-SRS. Methods and Materials: Patients undergoing HF-SRS for intact (iHF-SRS) or resected (rHF-SRS) BMs from 2008 to 2018 were retrospectively identified. Linear accelerator-based image-guided HF-SRS consisted of 5 fractions at 5, 5.5, or 6 Gy per fraction. Time to local progression (LP), time to distant brain progression (DBP), and overall survival (OS) were calculated. Cox models assessed effect of clinical factors on OS. Fine and Gray's cumulative incidence model for competing events examined effect of factors on LP and DBP. The occurrence of leptomeningeal disease (LMD) was determined. Logistic regression examined predictors of LMD. Results: Among 445 patients, median age was 63.5 years; 87% had Karnofsky performance status ≥70. Fifty-three % of patients underwent surgical resection, and 75% received 5 Gy per fraction. Patients with resected BMs had higher Karnofsky performance status (90-100, 41 vs 30%), less extracranial disease (absent, 25 vs 13%), and fewer BMs (multiple, 32 vs 67%). Median diameter of the dominant BM was 3.0 cm (interquartile range, 1.8-3.6 cm) for intact BMs and 4.6 cm (interquartile range, 3.9-5.5 cm) for resected BMs. Median OS was 5.1 months (95% confidence interval [CI], 4.3-6.0) following iHF-SRS and 12.8 months (95% CI, 10.8-16.2) following rHF-SRS (P < .01). Cumulative LP incidence was 14.5% at 18 months (95% CI, 11.4-18.0%), significantly associated with greater total GTV (hazard ratio, 1.12; 95% CI, 1.05-1.20) following iFR-SRS, and with recurrent versus newly diagnosed BMs across all patients (hazard ratio, 2.28; 95% CI, 1.01-5.15). Cumulative DBP incidence was significantly greater following rHF-SRS than iHF-SRS (P = .01), with respective 24-month rates of 50.0 (95% CI, 43.3-56.3) and 35.7% (95% CI, 29.2-42.2). LMD (57 events total; 33% nodular, 67% diffuse) was observed in 17.1% of rHF-SRS and 8.1% of iHF-SRS cases (odds ratio, 2.46; 95% CI, 1.34-4.53). Any radionecrosis and grade 2+ radionecrosis events were observed in 14 and 8% of cases, respectively. Conclusions: HF-SRS demonstrated favorable rates of LC and radionecrosis in postoperative and intact settings. Corresponding LMD and RN rates were comparable to those of other studies.

15.
Int J Radiat Oncol Biol Phys ; 115(3): 779-793, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36289038

RESUMEN

PURPOSE: We sought to develop a computer-aided detection (CAD) system that optimally augments human performance, excelling especially at identifying small inconspicuous brain metastases (BMs), by training a convolutional neural network on a unique magnetic resonance imaging (MRI) data set containing subtle BMs that were not detected prospectively during routine clinical care. METHODS AND MATERIALS: Patients receiving stereotactic radiosurgery (SRS) for BMs at our institution from 2016 to 2018 without prior brain-directed therapy or small cell histology were eligible. For patients who underwent 2 consecutive courses of SRS, treatment planning MRIs from their initial course were reviewed for radiographic evidence of an emerging metastasis at the same location as metastases treated in their second SRS course. If present, these previously unidentified lesions were contoured and categorized as retrospectively identified metastases (RIMs). RIMs were further subcategorized according to whether they did (+DC) or did not (-DC) meet diagnostic imaging-based criteria to definitively classify them as metastases based upon their appearance in the initial MRI alone. Prospectively identified metastases (PIMs) from these patients, and from patients who only underwent a single course of SRS, were also included. An open-source convolutional neural network architecture was adapted and trained to detect both RIMs and PIMs on thin-slice, contrast-enhanced, spoiled gradient echo MRIs. Patients were randomized into 5 groups: 4 for training/cross-validation and 1 for testing. RESULTS: One hundred thirty-five patients with 563 metastases, including 72 RIMS, met criteria. For the test group, CAD sensitivity was 94% for PIMs, 80% for +DC RIMs, and 79% for PIMs and +DC RIMs with diameter <3 mm, with a median of 2 false positives per patient and a Dice coefficient of 0.79. CONCLUSIONS: Our CAD model, trained on a novel data set and using a single common MR sequence, demonstrated high sensitivity and specificity overall, outperforming published CAD results for small metastases and RIMs - the lesion types most in need of human performance augmentation.


Asunto(s)
Neoplasias Encefálicas , Aprendizaje Profundo , Radiocirugia , Humanos , Estudios Retrospectivos , Radiocirugia/métodos , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/secundario
16.
Cancers (Basel) ; 14(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36358606

RESUMEN

Stereotactic radiosurgery (SRS) is a standard of care for many patients with brain metastases. To optimize post-SRS surveillance, this study aimed to validate a previously published nomogram predicting post-SRS intracranial progression (IP). We identified consecutive patients completing an initial course of SRS across two institutions between July 2017 and December 2020. Patients were classified as low- or high-risk for post-SRS IP per a previously published nomogram. Overall survival (OS) and freedom from IP (FFIP) were assessed via the Kaplan−Meier method. Assessment of parameters impacting FFIP was performed with univariable and multivariable Cox proportional hazard models. Among 890 patients, median follow-up was 9.8 months (95% CI 9.1−11.2 months). In total, 47% had NSCLC primary tumors, and 47% had oligometastatic disease (defined as ≤5 metastastic foci) at the time of SRS. Per the IP nomogram, 53% of patients were deemed high-risk. For low- and high-risk patients, median FFIP was 13.9 months (95% CI 11.1−17.1 months) and 7.6 months (95% CI 6.4−9.3 months), respectively, and FFIP was superior in low-risk patients (p < 0.0001). This large multisite BM cohort supports the use of an IP nomogram as a quick and simple means of stratifying patients into low- and high-risk groups for post-SRS IP.

18.
Neurooncol Adv ; 4(1): vdac086, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795470

RESUMEN

Background: Improved survival for patients with brain metastases has been accompanied by a rise in tumor recurrence after stereotactic radiotherapy (SRT). Laser interstitial thermal therapy (LITT) has emerged as an effective treatment for SRT failures as an alternative to open resection or repeat SRT. We aimed to evaluate the efficacy of LITT followed by SRT (LITT+SRT) in recurrent brain metastases. Methods: A multicenter, retrospective study was performed of patients who underwent treatment for biopsy-proven brain metastasis recurrence after SRT at an academic medical center. Patients were stratified by "planned LITT+SRT" versus "LITT alone" versus "repeat SRT alone." Index lesion progression was determined by modified Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) criteria. Results: Fifty-five patients met inclusion criteria, with a median follow-up of 7.3 months (range: 1.0-30.5), age of 60 years (range: 37-86), Karnofsky Performance Status (KPS) of 80 (range: 60-100), and pre-LITT/biopsy contrast-enhancing volume of 5.7 cc (range: 0.7-19.4). Thirty-eight percent of patients underwent LITT+SRT, 45% LITT alone, and 16% SRT alone. Median time to index lesion progression (29.8, 7.5, and 3.7 months [P = .022]) was significantly improved with LITT+SRT. When controlling for age in a multivariate analysis, patients treated with LITT+SRT remained significantly less likely to have index lesion progression (P = .004). Conclusions: These data suggest that LITT+SRT is superior to LITT or repeat SRT alone for treatment of biopsy-proven brain metastasis recurrence after SRT failure. Prospective trials are warranted to validate the efficacy of using combination LITT+SRT for treatment of recurrent brain metastases.

19.
Pract Radiat Oncol ; 12(5): 370-386, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35902341

RESUMEN

PURPOSE: This guideline provides evidence-based recommendations for adults with isocitrate dehydrogenase (IDH)-mutant grade 2 and grade 3 diffuse glioma, as classified in the 2021 World Health Organization (WHO) Classification of Tumours. It includes indications for radiation therapy (RT), advanced RT techniques, and clinical management of adverse effects. METHODS: The American Society for Radiation Oncology convened a multidisciplinary task force to address 4 key questions focused on the RT management of patients with IDH-mutant grade 2 and grade 3 diffuse glioma. Recommendations were based on a systematic literature review and created using a predefined consensus-building methodology and system for grading evidence quality and recommendation strength. RESULTS: A strong recommendation for close surveillance alone was made for patients with oligodendroglioma, IDH-mutant, 1p/19q codeleted, WHO grade 2 after gross total resection without high-risk features. For oligodendroglioma, WHO grade 2 with any high-risk features, adjuvant RT was conditionally recommended. However, adjuvant RT was strongly recommended for oligodendroglioma, WHO grade 3. A conditional recommendation for close surveillance alone was made for astrocytoma, IDH-mutant, WHO grade 2 after gross total resection without high-risk features. Adjuvant RT was conditionally recommended for astrocytoma, WHO grade 2, with any high-risk features and strongly recommended for astrocytoma, WHO grade 3. Dose recommendations varied based on histology and grade. Given known adverse long-term effects of RT, consideration for advanced techniques such as intensity modulated radiation therapy/volumetric modulated arc therapy or proton therapy were given as strong and conditional recommendations, respectively. Finally, based on expert opinion, the guideline recommends assessment, surveillance, and management for toxicity management. CONCLUSIONS: Based on published data, the American Society for Radiation Oncology task force has proposed recommendations to inform the management of adults with IDH-mutant grade 2 and grade 3 diffuse glioma as defined by WHO 2021 classification, based on the highest quality published data, and best translated by our task force of subject matter experts.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioma , Linfoma Folicular , Oligodendroglioma , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Glioma/genética , Glioma/radioterapia , Humanos , Organización Mundial de la Salud
20.
Adv Radiat Oncol ; 7(3): 100878, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35647401

RESUMEN

Purpose: Atypical (World Health Organization [WHO] grade 2) and malignant (WHO grade 3) meningiomas have high rates of local recurrence, and questions remain about the role of adjuvant radiation therapy (RT) for patients with WHO grade 2 disease. These patients frequently require salvage therapy, and optimal management is uncertain given limited prospective data. We report on the long-term outcomes for patients with atypical and malignant meningiomas treated with surgery and/or RT at our institution. Methods and Materials: Data were collected through a retrospective chart review for all patients with WHO grade 2 or 3 meningiomas treated with surgery and/or RT at our institution between January 1992 and March 2017. Progression-free survival (PFS) and overall survival (OS) were described using the KaplanMeier estimator. The outcomes in the subgroups were compared with a log-rank test. A Cox proportional hazards model was used for the univariable and multivariable analyses of predictors of PFS. Results: A total of 66 patients were included in this analysis. The median follow-up was 12.4 years overall and 8.6 years among surviving patients. Fifty-two patients (78.8%) had WHO grade 2 meningiomas, and 14 patients (21.2%) had WHO grade 3 disease. Thirty-six patients (54.5%) were treated with surgery alone, 28 patients (42.4%) with surgery and adjuvant RT, and 2 patients (3%) with RT alone. Median PFS and OS were 3.2 years and 8.8 years, respectively. PFS was significantly improved with adjuvant RT compared with surgery alone (hazard ratio, 0.36; 95% confidence interval, 0.18-0.70). Patients with Ki-67 index >10% showed a trend toward worse PFS compared with patients with Ki-67 ≤10% (hazard ratio, 0.51; 95% confidence interval, 0.25-1.04). No significant differences in PFS or OS were observed with respect to Simpson or WHO grade. Conclusions: For patients with atypical or malignant meningiomas, adjuvant RT was associated with significantly improved PFS, and Ki-67 index >10% was associated with a trend toward worse PFS. Given the long-term survival, high recurrence rates, and efficacy of salvage therapy, patients with atypical and malignant meningiomas should be monitored systematically long after initial treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA