Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
bioRxiv ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38370768

RESUMEN

To investigate the co-development of vasculature, mesenchyme, and epithelium crucial for organogenesis and the acquisition of organ-specific characteristics, we constructed a human pluripotent stem cell-derived organoid system comprising lung or intestinal epithelium surrounded by organotypic mesenchyme and vasculature. We demonstrated the pivotal role of co-differentiating mesoderm and endoderm via precise BMP regulation in generating multilineage organoids and gut tube patterning. Single-cell RNA-seq analysis revealed organ specificity in endothelium and mesenchyme, and uncovered key ligands driving endothelial specification in the lung (e.g., WNT2B and Semaphorins) or intestine (e.g., GDF15). Upon transplantation under the kidney capsule in mice, these organoids further matured and developed perfusable human-specific sub-epithelial capillaries. Additionally, our model recapitulated the abnormal endothelial-epithelial crosstalk in patients with FOXF1 deletion or mutations. Multilineage organoids provide a unique platform to study developmental cues guiding endothelial and mesenchymal cell fate determination, and investigate intricate cell-cell communications in human organogenesis and disease. Highlights: BMP signaling fine-tunes the co-differentiation of mesoderm and endoderm.The cellular composition in multilineage organoids resembles that of human fetal organs.Mesenchyme and endothelium co-developed within the organoids adopt organ-specific characteristics.Multilineage organoids recapitulate abnormal endothelial-epithelial crosstalk in FOXF1-associated disorders.

2.
Nat Protoc ; 17(11): 2699-2719, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35978039

RESUMEN

Development of visceral organs such as the esophagus, lung, liver and stomach are coordinated by reciprocal signaling interactions between the endoderm and adjacent mesoderm cells in the fetal foregut. Although the recent successes in recapitulating developmental signaling in vitro has enabled the differentiation of human pluripotent stem cells (hPSCs) into various types of organ-specific endodermal epithelium, the generation of organ-specific mesenchyme has received much less attention. This is a major limitation in ongoing efforts to engineer complex human tissue. Here, we describe a protocol to differentiate hPSCs into different types of organ-specific mesoderm, leveraging signaling networks and molecular markers elucidated from single-cell transcriptomics of mouse foregut organogenesis. Building on established methods, hPSC-derived lateral plate mesoderm treated with either retinoic acid (RA) or RA together with a Hedgehog (HH) agonist generates posterior or anterior foregut splanchnic mesoderm, respectively, after 4-d cultures. These are directed into organ-specific mesenchyme lineages by the combinatorial activation or inhibition of WNT, BMP, RA or HH pathways from days 4 to 7 in cultures. By day 7, the cultures are enriched for different types of mesoderm with distinct molecular signatures: 60-90% pure liver septum transversum/mesothelium-like, 70-80% pure liver-like fibroblasts and populations of ~35% respiratory-like mesoderm, gastric-like mesoderm or esophageal-like mesoderm. This protocol can be performed by anyone with moderate experience differentiating hPSCs, provides a novel platform to study human mesoderm development and can be used to engineer more complex foregut tissue for disease modeling and regenerative medicine.


Asunto(s)
Proteínas Hedgehog , Células Madre Pluripotentes , Humanos , Ratones , Animales , Proteínas Hedgehog/metabolismo , Mesodermo , Endodermo , Diferenciación Celular , Tretinoina/farmacología , Pulmón
3.
Cell Stem Cell ; 29(1): 36-51.e6, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34856121

RESUMEN

Human organoid model systems lack important cell types that, in the embryo, are incorporated into organ tissues during development. We developed an organoid assembly approach starting with cells from the three primary germ layers-enteric neuroglial, mesenchymal, and epithelial precursors-that were derived separately from human pluripotent stem cells (PSCs). From these three cell types, we generated human antral and fundic gastric tissue containing differentiated glands surrounded by layers of smooth muscle containing functional enteric neurons that controlled contractions of the engineered antral tissue. Using this experimental system, we show that human enteric neural crest cells (ENCCs) promote mesenchyme development and glandular morphogenesis of antral stomach organoids. Moreover, ENCCs can act directly on the foregut to promote a posterior fate, resulting in organoids with a Brunner's gland phenotype. Thus, germ layer components that are derived separately from PSCs can be used for tissue engineering to generate complex human organoids.


Asunto(s)
Organoides , Células Madre Pluripotentes , Diferenciación Celular , Endodermo , Humanos , Cresta Neural
4.
Development ; 148(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34228796

RESUMEN

The trachea delivers inhaled air into the lungs for gas exchange. Anomalies in tracheal development can result in life-threatening malformations, such as tracheoesophageal fistula and tracheomalacia. Given the limitations of current therapeutic approaches, development of technologies for the reconstitution of a three-dimensional trachea from stem cells is urgently required. Recently, single-cell sequencing technologies and quantitative analyses from cell to tissue scale have been employed to decipher the cellular basis of tracheal morphogenesis. In this Review, recent advances in mammalian tracheal development and the generation of tracheal tissues from pluripotent stem cells are summarized.


Asunto(s)
Pulmón/crecimiento & desarrollo , Morfogénesis/fisiología , Tráquea/crecimiento & desarrollo , Fístula Traqueoesofágica/patología , Animales , Cartílago/crecimiento & desarrollo , Diferenciación Celular , Epitelio , Humanos , Mesodermo/crecimiento & desarrollo , Ratones , Morfogénesis/genética , Sistema Respiratorio , Tráquea/anomalías , Traqueomalacia , Transcriptoma
5.
Nat Commun ; 11(1): 4159, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32855415

RESUMEN

The periodic cartilage and smooth muscle structures in mammalian trachea are derived from tracheal mesoderm, and tracheal malformations result in serious respiratory defects in neonates. Here we show that canonical Wnt signaling in mesoderm is critical to confer trachea mesenchymal identity in human and mouse. At the initiation of tracheal development, endoderm begins to express Nkx2.1, and then mesoderm expresses the Tbx4 gene. Loss of ß-catenin in fetal mouse mesoderm causes loss of Tbx4+ tracheal mesoderm and tracheal cartilage agenesis. The mesenchymal Tbx4 expression relies on endodermal Wnt activation and Wnt ligand secretion but is independent of known Nkx2.1-mediated respiratory development, suggesting that bidirectional Wnt signaling between endoderm and mesoderm promotes trachea development. Activating Wnt, Bmp signaling in mouse embryonic stem cell (ESC)-derived lateral plate mesoderm (LPM) generates tracheal mesoderm containing chondrocytes and smooth muscle cells. For human ESC-derived LPM, SHH activation is required along with WNT to generate proper tracheal mesoderm. Together, these findings may contribute to developing applications for human tracheal tissue repair.


Asunto(s)
Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Tráquea/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/genética , Animales , Diferenciación Celular/genética , Células Cultivadas , Endodermo/citología , Endodermo/embriología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Mesodermo/citología , Mesodermo/embriología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Células Madre Embrionarias de Ratones/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factor Nuclear Tiroideo 1/genética , Factor Nuclear Tiroideo 1/metabolismo , Tráquea/citología , Tráquea/embriología , beta Catenina/metabolismo
6.
Nat Commun ; 11(1): 4158, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32855417

RESUMEN

Visceral organs, such as the lungs, stomach and liver, are derived from the fetal foregut through a series of inductive interactions between the definitive endoderm (DE) and the surrounding splanchnic mesoderm (SM). While DE patterning is fairly well studied, the paracrine signaling controlling SM regionalization and how this is coordinated with epithelial identity is obscure. Here, we use single cell transcriptomics to generate a high-resolution cell state map of the embryonic mouse foregut. This identifies a diversity of SM cell types that develop in close register with the organ-specific epithelium. We infer a spatiotemporal signaling network of endoderm-mesoderm interactions that orchestrate foregut organogenesis. We validate key predictions with mouse genetics, showing the importance of endoderm-derived signals in mesoderm patterning. Finally, leveraging these signaling interactions, we generate different SM subtypes from human pluripotent stem cells (hPSCs), which previously have been elusive. The single cell data can be explored at: https://research.cchmc.org/ZornLab-singlecell .


Asunto(s)
Sistema Digestivo/metabolismo , Endodermo/metabolismo , Redes Reguladoras de Genes , Mesodermo/metabolismo , Organogénesis/genética , Transducción de Señal/genética , Animales , Linaje de la Célula/genética , Sistema Digestivo/citología , Sistema Digestivo/embriología , Endodermo/citología , Endodermo/embriología , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Humanos , Internet , Mesodermo/citología , Mesodermo/embriología , Ratones Endogámicos C57BL , Análisis de la Célula Individual/métodos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Nat Commun ; 9(1): 2816, 2018 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-30026494

RESUMEN

Tube morphogenesis is essential for internal-organ development, yet the mechanisms regulating tube shape remain unknown. Here, we show that different mechanisms regulate the length and diameter of the murine trachea. First, we found that trachea development progresses via sequential elongation and expansion processes. This starts with a synchronized radial polarization of smooth muscle (SM) progenitor cells with inward Golgi-apparatus displacement regulates tube elongation, controlled by mesenchymal Wnt5a-Ror2 signaling. This radial polarization directs SM progenitor cell migration toward the epithelium, and the resulting subepithelial morphogenesis supports tube elongation to the anteroposterior axis. This radial polarization also regulates esophageal elongation. Subsequently, cartilage development helps expand the tube diameter, which drives epithelial-cell reshaping to determine the optimal lumen shape for efficient respiration. These findings suggest a strategy in which straight-organ tubulogenesis is driven by subepithelial cell polarization and ring cartilage development.


Asunto(s)
Cartílago/metabolismo , Esófago/metabolismo , Morfogénesis/genética , Músculo Liso/metabolismo , Miocitos del Músculo Liso/metabolismo , Tráquea/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Animales , Cartílago/citología , Cartílago/crecimiento & desarrollo , Diferenciación Celular , Polaridad Celular , Embrión de Mamíferos , Esófago/citología , Esófago/crecimiento & desarrollo , Femenino , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Transgénicos , Músculo Liso/citología , Miocitos del Músculo Liso/citología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Transducción de Señal , Tráquea/citología , Tráquea/crecimiento & desarrollo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
8.
Nat Commun ; 9(1): 2815, 2018 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-30022023

RESUMEN

Tubulogenesis is essential for the formation and function of internal organs. One such organ is the trachea, which allows gas exchange between the external environment and the lungs. However, the cellular and molecular mechanisms underlying tracheal tube development remain poorly understood. Here, we show that the potassium channel KCNJ13 is a critical modulator of tracheal tubulogenesis. We identify Kcnj13 in an ethylnitrosourea forward genetic screen for regulators of mouse respiratory organ development. Kcnj13 mutants exhibit a shorter trachea as well as defective smooth muscle (SM) cell alignment and polarity. KCNJ13 is essential to maintain ion homeostasis in tracheal SM cells, which is required for actin polymerization. This process appears to be mediated, at least in part, through activation of the actin regulator AKT, as pharmacological increase of AKT phosphorylation ameliorates the Kcnj13-mutant trachea phenotypes. These results provide insight into the role of ion homeostasis in cytoskeletal organization during tubulogenesis.


Asunto(s)
Morfogénesis/genética , Músculo Liso/metabolismo , Miocitos del Músculo Liso/metabolismo , Canales de Potasio de Rectificación Interna/genética , Proteínas Proto-Oncogénicas c-akt/genética , Tráquea/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Animales , Polaridad Celular , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Transporte Iónico , Ratones Noqueados , Músculo Liso/citología , Miocitos del Músculo Liso/citología , Fosforilación , Polimerizacion , Canales de Potasio de Rectificación Interna/deficiencia , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Tráquea/citología , Tráquea/crecimiento & desarrollo
9.
J Biol Chem ; 288(44): 31772-83, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24052261

RESUMEN

Osteogenesis is a complex process that is orchestrated by several growth factors, extracellular cues, signaling molecules, and transcriptional factors. Understanding the mechanisms of bone formation is pivotal for clarifying the pathogenesis of bone diseases. Previously, we reported that fad104 (factor for adipocyte differentiation 104), a novel positive regulator of adipocyte differentiation, negatively regulated the differentiation of mouse embryonic fibroblasts into osteocytes. However, the physiological role of fad104 in bone formation has not been elucidated. Here, we clarified the role of fad104 in bone formation in vivo and in vitro. fad104 disruption caused craniosynostosis-like premature ossification of the calvarial bone. Furthermore, analyses using primary calvarial cells revealed that fad104 negatively regulated differentiation and BMP/Smad signaling pathway. FAD104 interacted with Smad1/5/8. The N-terminal region of FAD104, which contains a proline-rich motif, was capable of binding to Smad1/5/8. We demonstrated that down-regulation of Smad1/5/8 phosphorylation by FAD104 is dependent on the N-terminal region of FAD104 and that fad104 functions as a novel negative regulator of BMP/Smad signaling and is required for proper development for calvarial bone. These findings will aid a comprehensive description of the mechanism that controls normal and premature calvarial ossification.


Asunto(s)
Diferenciación Celular/fisiología , Fibronectinas/biosíntesis , Regulación del Desarrollo de la Expresión Génica/fisiología , Osteogénesis/fisiología , Transducción de Señal/fisiología , Cráneo/embriología , Adipogénesis/fisiología , Animales , Células Cultivadas , Craneosinostosis/embriología , Craneosinostosis/genética , Craneosinostosis/patología , Regulación hacia Abajo/fisiología , Fibronectinas/genética , Metaloproteinasas de la Matriz Secretadas/genética , Metaloproteinasas de la Matriz Secretadas/metabolismo , Ratones , Ratones Noqueados , Fosforilación/fisiología , Estructura Terciaria de Proteína , Proteínas Smad/genética , Proteínas Smad/metabolismo
10.
Exp Cell Res ; 317(15): 2110-23, 2011 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-21704616

RESUMEN

Factor for adipocyte differentiation 104 (fad104) is a regulator of adipogenesis and osteogenesis. Our previous study showed that fad104-deficient mice died immediately after birth, suggesting fad104 to be essential for neonatal survival. However, the cause of this rapid death is unclear. Here, we demonstrate the role of fad104 in neonatal survival. Phenotypic and morphological analyses showed that fad104-deficient mice died due to cyanosis-associated lung dysplasia including atelectasis. Furthermore, immunohistochemistry revealed that FAD104 was strongly expressed in ATII cells in the developing lung. Most importantly, the ATII cells in lungs were immature, and impaired the expression of surfactant-associated proteins. Collectively, these results indicate that fad104 has an indispensable role in lung maturation, especially the maturation and differentiation of ATII cells.


Asunto(s)
Fibronectinas/fisiología , Pulmón/embriología , Adipogénesis , Animales , Diferenciación Celular , Embrión de Mamíferos/metabolismo , Fibronectinas/metabolismo , Inmunohistoquímica , Pulmón/citología , Pulmón/metabolismo , Ratones , Ratones Noqueados
11.
Biochem Biophys Res Commun ; 397(2): 187-91, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20493170

RESUMEN

Fad104 (factor for adipocyte differentiation 104) is a novel gene expressed temporarily in the early stages of adipocyte differentiation. Previously, we showed that fad104 promotes adipocyte differentiation in mouse 3T3-L1 cells and mouse embryonic fibroblasts (MEFs). Furthermore, we reported that implanted wild-type MEFs could develop into adipocytes, whereas fad104-deficient MEFs could not. Interestingly, bone-like tissues were only observed in the implants derived from fad104-deficient MEFs. This result implies that fad104 is involved in osteoblast differentiation. However, the functions of fad104 during osteogenesis are unknown. In this paper, we show that fad104 negatively regulates osteoblast differentiation. During the differentiation process, the level of fad104 expression decreased. Deletion of fad104 facilitated osteoblast differentiation in MEFs, and elevated the level of runx2, a master regulator of osteoblast differentiation. Disruption of fad104 suppressed BMP-2-mediated adipocyte differentiation in MEFs. In conclusion, we demonstrate that fad104 reciprocally regulates differentiation of adipocytes and osteoblast; functions as a positive regulator in adipocyte differentiation and as a negative regulator in osteoblast differentiation.


Asunto(s)
Adipogénesis/genética , Diferenciación Celular/genética , Fibronectinas/fisiología , Osteoblastos/citología , Animales , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Fibronectinas/genética , Eliminación de Gen , Ratones , Ratones Mutantes
12.
Biol Pharm Bull ; 32(10): 1656-64, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19801824

RESUMEN

We have previously reported that a novel gene, factor for adipocyte differentiation (fad) 24, promotes adipogenesis in vitro. To examine the role of fad24 in adipogenesis in vivo and the development of obesity, transgenic mice overexpressing fad24 were generated using mouse fad24 cDNA under the control of a chicken beta-actin promoter and cytomegalovirus enhancer. The comparison of the ability of fibroblasts from fad24 transgenic embryos to differentiate into adipocytes with that of fibroblasts from wild-type embryos revealed that fad24 overexpression promotes adipogenesis in embryonic fibroblasts. The weight and histology of white adipose tissues, and serum adipocytokine levels were compared between fad24 transgenic mice and wild-type mice, and we found that fad24 overexpression increased the number of smaller adipocytes, caused hyperplasia rather than hypertrophy in white adipose tissue and increased the serum adiponectin level in mice fed both normal chow and a high-fat diet. Glucose and insulin tolerance tests indicated that the activity for glucose metabolism is improved in fad24 transgenic mice fed normal chow in comparison with that in wild-type mice. Our findings suggest that fad24 is a positive regulator of adipogenesis in vivo. Moreover, the increase in the number of smaller adipocytes caused by the overexpression of fad24 appears to enhance glucose metabolic activity, perhaps by increasing the serum adiponectin level.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis , Tejido Adiposo/patología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Glucemia/metabolismo , Proteínas Nucleares/metabolismo , Obesidad/etiología , Actinas/genética , Adipogénesis/genética , Adiponectina/sangre , Tejido Adiposo/metabolismo , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas de Ciclo Celular , Pollos , Citomegalovirus , ADN Complementario , Grasas de la Dieta , Fibroblastos/metabolismo , Expresión Génica , Hiperplasia/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , Obesidad/metabolismo , Obesidad/patología , Regiones Promotoras Genéticas
13.
Exp Cell Res ; 315(5): 809-19, 2009 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-19138685

RESUMEN

The molecular mechanisms at the beginning of adipogenesis remain unknown. Previously, we identified a novel gene, fad104 (factor for adipocyte differentiation 104), transiently expressed at the early stage of adipocyte differentiation. Since the knockdown of the expression of fad104 dramatically repressed adipogenesis, it is clear that fad104 plays important roles in adipocyte differentiation. However, the physiological roles of fad104 are still unknown. In this study, we generated fad104-deficient mice by gene targeting. Although the mice were born in the expected Mendelian ratios, all died within 1 day of birth, suggesting fad104 to be crucial for survival after birth. Furthermore, analyses of mouse embryonic fibroblasts (MEFs) prepared from fad104-deficient mice provided new insights into the functions of fad104. Disruption of fad104 inhibited adipocyte differentiation and cell proliferation. In addition, cell adhesion and wound healing assays using fad104-deficient MEFs revealed that loss of fad104 expression caused a reduction in stress fiber formation, and notably delayed cell adhesion, spreading and migration. These results indicate that fad104 is essential for the survival of newborns just after birth and important for cell proliferation, adhesion, spreading and migration.


Asunto(s)
Movimiento Celular/genética , Proliferación Celular , Tamaño de la Célula , Viabilidad Fetal/genética , Fibronectinas/genética , Fibronectinas/fisiología , Adipocitos/metabolismo , Adipocitos/fisiología , Adipogénesis/genética , Adipogénesis/fisiología , Animales , Adhesión Celular/genética , Células Cultivadas , Retículo Endoplásmico/genética , Retículo Endoplásmico/fisiología , Fibronectinas/metabolismo , Marcación de Gen , Ratones , Ratones Noqueados , Fibras de Estrés/metabolismo , Fibras de Estrés/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA