RESUMEN
Familial chylomicronemia syndrome (FCS) is a rare disorder of triglyceride (TG) metabolism caused by loss of function variants in one of five known canonical genes involved in chylomicron lipolysis and clearance-LPL, APOC2, APOA5, LMF1, and GPIHBP1. Pathogenic variants in LPL, which encodes the hydrolytic enzyme lipoprotein lipase, account for over 80%-90% of cases. FCS may present in infancy with hypertriglyceridemia-induced acute pancreatitis and is challenging to manage both acutely and in the long-term. Here, we report our experience managing two unrelated infants consecutively diagnosed with hypertriglyceridemia-induced acute pancreatitis caused by LPL deficiency. Both had elevated TGs at presentation (205 and 30 mmol/L, respectively) and molecular genetic testing confirmed each infant carried a different homozygous pathogenic variant in the LPL gene, specifically, c.987C>A (p.Tyr329Ter) and c.632C>A (p.Thr211Lys). The more severely affected infant had cutaneous xanthomata, lipemia retinalis and lipemic plasma at presentation, and required management in an intensive care setting. Acute stabilisation was achieved using insulin and heparin infusions together with the iterative implementation of a fat-restricted diet, low in long chain triglycerides (LCT) and supplemented with medium chain triglycerides (MCT). In both cases, provision of adequate caloric intake (~110-120 kcal/kg/day) was also found to be important for a sustained TG reduction during the acute phase of management. In summary, a high index of suspicion is required to diagnose FCS in infants with hypertriglyceridemia-induced acute pancreatitis, management of which can be challenging, highlighting the need for more evidence-based recommendations.
RESUMEN
Mitochondrial respiratory chain disorders (MRC) are amongst the most common group of inborn errors of metabolism. MRC, of which complex I deficiency accounts for approximately a quarter, are very diverse, causing a wide range of clinical problems and can be difficult to diagnose. We report an illustrative MRC case whose diagnosis was elusive. Clinical signs included failure to thrive caused by recurrent vomiting, hypotonia and progressive loss of motor milestones. Initial brain imaging suggested Leigh syndrome but without expected diffusion restriction. Muscle respiratory chain enzymology was unremarkable. Whole-genome sequencing identified a maternally inherited NDUFV1 missense variant [NM_007103.4 (NDUFV1):c.1157G > A; p.(Arg386His)] and a paternally inherited synonymous variant [NM_007103.4 (NDUFV1):c.1080G > A; (p.Ser360=)]. RNA sequencing demonstrated aberrant splicing. This case emphasizes the diagnostic odyssey of a patient in whom a confirmed diagnosis was elusive because of atypical features and normal muscle respiratory chain enzyme (RCE) activities, along with a synonymous variant, which are often filtered out from genomic analyses. It also illustrates the following points: (1) complete resolution of magnetic resonance imaging changes may be part of the picture in mitochondrial disease; (2) analysis for synonymous variants is important for undiagnosed patients; and (3) RNA-seq is a powerful tool to demonstrate pathogenicity of putative splicing variants.
Asunto(s)
Imagen por Resonancia Magnética , Músculos , Humanos , RNA-Seq , Secuenciación Completa del Genoma , Encéfalo , Complejo I de Transporte de Electrón/genéticaAsunto(s)
Hipoglucemia , Errores Innatos del Metabolismo Lipídico , Rabdomiólisis , Acil-CoA Deshidrogenasa , Síndromes Congénitos de Insuficiencia de la Médula Ósea , Humanos , Hipoglucemia/etiología , Lactante , Errores Innatos del Metabolismo Lipídico/complicaciones , Errores Innatos del Metabolismo Lipídico/diagnóstico , Enfermedades Mitocondriales , Enfermedades Musculares , Rabdomiólisis/diagnóstico , Rabdomiólisis/etiologíaRESUMEN
Sitosterolemia is an extremely rare autosomal recessive disease caused by mutations in either ABCG5 or ABCG8, which encode for a sterol efflux transporter (sterolin) that pumps sterols out into the intestinal lumen or into bile. This leads to progressive accumulation of plant sterols in blood and tissues. Clinical presentation is variable and may include xanthoma, arthritis, thyroid dysfunction, premature atherosclerotic disease, splenomegaly, and hematologic manifestations. We report a child presented with multiple xanthomas at age 5.5 years, located on the elbow, knee, and toe. Juvenile xanthogranuloma was considered based on histopathologic findings. At 8 years of age, a lipid profile showed markedly elevated total cholesterol (9.4 mmol/L) and low-density lipoprotein cholesterol (LDL-C, 7.4 mmol/L). Simvastatin therapy was initiated, however, the lipid profile was persistently abnormal. At age 8.5 years, genetic testing identified two novel variants: (NM_022437.3[ABCG8]:c.1444del;p.Leu482Trpfs*40) and (NM_022437.3[ABCG8]:c.1640T>C;p.Leu547Pro) in the ABCG8 gene. Plasma sitosterol was subsequently found to be very high, confirming the diagnosis. She was started on a low plant sterol and cholesterol diet for 6 weeks with insignificant response and therefore ezetimibe (10 mg daily) was added. This resulted in significant reduction of cholesterol, LDL, sitosterol levels, and no further increase in the size of the xanthomas. This case emphasizes the diagnostic odyssey, the benefits of genomic testing and importance of a correct diagnosis in order to initiate appropriate therapy. It also illustrates the importance of considering rare conditions, such as sitosterolemia, as a differential diagnosis in patients with hypercholesterolemia and increased LDL-C.