Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Neurosci Lett ; 808: 137297, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37182575

RESUMEN

Physical exercise is beneficial for preventing Alzheimer's disease (AD) and cognitive decline through several mechanisms, including suppression of neuroinflammation and neuronal loss in the hippocampus. Despite these exercise-induced benefits in AD pathology, less attention has been paid to the importance of maintaining exercise and the consequences of detraining. This study aimed to investigate the effects of early exercise intervention and detraining on age-related cognitive decline and its protective mechanisms using senescence-accelerated mouse prone 8 (SAMP8). These mice were divided to four groups: no-exercise (No-Ex, n = 9), 4 months (4 M)-detraining (n = 11), 2 months (2 M)-detraining (n = 11), and long-term exercise (LT-Ex, n = 13). Age-related cognitive decline was prevented in the LT-Ex group compared with the No-Ex group through the suppression of neuronal loss, enhanced brain-derived neurotrophic factor (BDNF), and inhibition of neuroinflammation corresponding to reduced M1 and increased M2 microglia in the hippocampus. No significant differences were observed in cognitive function between the detraining and No-Ex groups. However, the 2 M-detraining group showed increased BDNF positive area in the CA1 region and the enhancement of anti-inflammatory M2 phenotype microglia. In contrast, no statistically beneficial exercise-induced changes in the hippocampus were observed in the 4 M-detrainig group. These results showed that early exercise intervention prevented age-related cognitive deficits in AD progression by suppressing neuronal loss and neuroinflammation in the hippocampus. Exercise-induced benefits, including the anti-inflammation in the hippocampus, may be retained after exercise cessation, even if exercise-induced beneficial effects decline in a time-dependent manner.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Animales , Humanos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Enfermedades Neuroinflamatorias , Disfunción Cognitiva/prevención & control , Disfunción Cognitiva/patología , Cognición , Hipocampo , Enfermedad de Alzheimer/patología , Terapia por Ejercicio , Modelos Animales de Enfermedad
2.
Sci Rep ; 13(1): 2158, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36750711

RESUMEN

Remote ischemic perconditioning (RIPerC) is a novel neuroprotective method against cerebral infarction that has shown efficacy in animal studies but has not been consistently neuroprotective in clinical trials. We focused on the temporal regulation of ischemia-reperfusion by RIPerC to establish an optimal method for RIPerC. Rats were assigned to four groups: 10 min ischemia, 5 min reperfusion; 10 min ischemia, 10 min reperfusion; 5 min ischemia, 10 min reperfusion; and no RIPerC. RIPerC interventions were performed during ischemic stroke, which was induced by a 60-min left middle cerebral artery occlusion. Infarct volume, sensorimotor function, neurological deficits, and cellular expressions of brain-derived neurotrophic factor (BDNF), B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), and caspase 3 were evaluated 48 h after the induction of ischemia. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL) was also performed. RIPerC of 10 min ischemia/10 min reperfusion, and 5 min ischemia/10 min reperfusion decreased infarct volume, improved sensorimotor function, decreased Bax, caspase 3, and TUNEL-positive cells, and increased BDNF and Bcl-2 expressions. Our findings suggest RIPerC with a reperfusion time of approximately 10 min exerts its neuroprotective effects via an anti-apoptotic mechanism. This study provides important preliminary data to establish more effective RIPerC interventions.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Ratas , Animales , Ratas Sprague-Dawley , Factor Neurotrófico Derivado del Encéfalo , Caspasa 3 , Proteína X Asociada a bcl-2 , Isquemia , Infarto , Infarto Cerebral , Daño por Reperfusión/patología , Apoptosis , Infarto de la Arteria Cerebral Media
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA