RESUMEN
Serrulatanes constitute a class of unique diterpenoids derived from all-Z nerylneryl diphosphate rather than the conventional all-E diterpenoid precursor geranylgeranyl diphosphate and thus provide an intriguing expansion of the chemical space of plant specialized metabolites. Plants of the Australian Eremophila genus are rich sources of structurally diverse serrulatanes. Here, we report the identification of 15 hitherto undescribed serrulatanes (eremoculatanes A-N), together with 16 previously reported compounds, from the EtOAc extract of Eremophila denticulata leaves. Isolation was performed by a combined use of systematic HPLC-PDA-HRMS-based phytochemical profiling and orthogonal reversed-phase C18 and pentafluorophenyl separations. Among the new compounds isolated, eremoculatane A contains a C12 backbone, for which the configuration was established by comparison of experimentally measured and theoretically calculated ECD spectra. The antihyperglycemic and antibacterial activities of the E. denticulata extract were investigated by high-resolution inhibition profiling, and they indicated that major constituents, mainly serrulatanes and flavonoids, contributed to the observed activity of the extract. One flavonoid, eupafolin (4), displayed moderate α-glucosidase inhibitory activity with an IC50 value of 41.3 µM, and four serrulatanes (8, 9, 19g, and 19j) showed more than 50% PTP1B inhibition at 200 µM.
Asunto(s)
Extractos Vegetales , Scrophulariaceae , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión , Australia , Hipoglucemiantes/química , Flavonoides , Fitoquímicos , Scrophulariaceae/químicaRESUMEN
Lupins are high-protein crops that are rapidly gaining interest as hardy alternatives to soybean; however, they accumulate antinutritional alkaloids of the quinolizidine type (QAs). Lupin domestication was enabled by the discovery of genetic loci conferring low QA levels (sweetness), but the precise identity of the underlying genes remains uncertain. We show that pauper, the most common sweet locus in white lupin, encodes an acetyltransferase (AT) unexpectedly involved in the early QA pathway. In pauper plants, a single-nucleotide polymorphism (SNP) strongly impairs AT activity, causing pathway blockage. We corroborate our hypothesis by replicating the pauper chemotype in narrow-leafed lupin via mutagenesis. Our work adds a new dimension to QA biosynthesis and establishes the identity of a lupin sweet gene for the first time, thus facilitating lupin breeding and enabling domestication of other QA-containing legumes.
Asunto(s)
Lupinus , Fitomejoramiento , Mutación , Hojas de la Planta/genética , Lupinus/genética , Lupinus/metabolismo , Sitios GenéticosRESUMEN
Extracts of Eremophila phyllopoda subsp. phyllopoda showed α-glucosidase and PTP1B inhibitory activity with IC50 values of 19.6 and 13.6 µg/mL, respectively. High-resolution α-glucosidase/PTP1B/radical scavenging profiling was performed to establish a triple high-resolution inhibition profile that allowed direct pinpointing of the constituents responsible for one or more of the observed bioactivities. Subsequent targeted isolation and purification by analytical-scale HPLC led to the identification of 21 previously undescribed serrulatane diterpenoids, eremophyllanes A-U, as well as two known serrulatane diterpenoids, 1ß-trihydroxyserrulatane (8) and 1α-trihydroxyserrulatane (10d), and five known furofuran lignans, (+)-piperitol (6), horsfieldin (7e), (-)-sesamin (9), (+)-sesamin (10h), and asarinin (10i). Their structures were elucidated by extensive analysis of HRMS and 1D and 2D NMR spectroscopic data. The relative configurations of the previously undescribed compounds were established by analysis of ROESY spectra as well as by DFT-GIAO NMR calculations followed by DP4+ probability analysis. The absolute configurations were determined by comparison of experimental and calculated ECD spectra. Serrulatane diterpenoids 7b and 14 exhibited α-glucosidase inhibitory activity with IC50 values of 28.4 and 64.2 µM, respectively, while 11, 12, 14, and 15 exhibited PTP1B inhibitory activity with IC50 values ranging from 16.6 to 104.6 µM. Hypothetical routes for formation of all identified serrulatane diterpenoids are proposed.
Asunto(s)
Diterpenos , Scrophulariaceae , alfa-Glucosidasas/metabolismo , Dicroismo Circular , Diterpenos/farmacología , Espectroscopía de Resonancia Magnética , Estructura Molecular , Scrophulariaceae/químicaRESUMEN
Discovery of sustainable and benign-by-design drugs to combat emerging health pandemics calls for new analytical technologies to explore the chemical and pharmacological properties of Nature's unique chemical space. Here, we present a new analytical technology workflow, polypharmacology-labeled molecular networking (PLMN), where merged positive and negative ionization tandem mass spectrometry-based molecular networking is linked with data from polypharmacological high-resolution inhibition profiling for easy and fast identification of individual bioactive constituents in complex extracts. The crude extract of Eremophila rugosa was subjected to PLMN analysis for the identification of antihyperglycemic and antibacterial constituents. Visually easy-interpretable polypharmacology scores and polypharmacology pie charts as well as microfractionation variation scores of each node in the molecular network provided direct information about each constituent's activity in the seven assays included in this proof-of-concept study. A total of 27 new non-canonical nerylneryl diphosphate-derived diterpenoids were identified. Serrulatane ferulate esters were shown to be associated with antihyperglycemic and antibacterial activities, including some showing synergistic activity with oxacillin in clinically relevant (epidemic) methicillin-resistant Staphylococcus aureus strains and some showing saddle-shaped binding to the active site of protein-tyrosine phosphatase 1B. PLMN is scalable in the number and types of assays included and thus holds potential for a paradigm shift toward polypharmacological natural-products-based drug discovery.
Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Polifarmacología , Flujo de Trabajo , Antibacterianos/farmacología , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/químicaRESUMEN
The plant genus Eremophila is endemic to Australia and widespread in arid regions. Root bark extract of Eremophila longifolia (R.Br.) F.Muell. (Scrophulariaceae) was investigated by LC-PDA-HRMS, and dereplication suggested the presence of a series of diterpenoids. Using a combination of preparative- and analytical-scale HPLC separation as well as extensive 1D and 2D NMR analysis, the structures of 12 hitherto unreported serrulatane diterpenoids, eremolongine A-L, were established. These structures included serrulatanes with unusual side chain modifications to form hitherto unseen skeletons with, e.g., cyclopentane, oxepane, and bicyclic hexahydro-1H-cyclopenta[c]furan moieties. Serrulatane diterpenoids in Eremophila have recently been shown to originate from a common biosynthetic precursor with conserved stereochemical configuration, and this was used for tentative assignment of the relative and absolute configuration of the isolated compounds. Triple high-resolution α-glucosidase/α-amylase/PTP1B inhibition profiling demonstrated that several of the eremolongines had weak inhibitory activity towards targets important for management of type 2 diabetes.
Asunto(s)
Diabetes Mellitus Tipo 2 , Diterpenos , Scrophulariaceae , Ciclopentanos , Diterpenos/farmacología , Furanos/química , Corteza de la Planta , Extractos Vegetales/química , Scrophulariaceae/química , alfa-Amilasas , alfa-GlucosidasasRESUMEN
The diterpenoid triepoxides triptolide and triptonide from Tripterygium wilfordii (thunder god wine) exhibit unique bioactivities with potential uses in disease treatment and as a non-hormonal male contraceptives. Here, we show that cytochrome P450s (CYPs) from the CYP71BE subfamily catalyze an unprecedented 18(4â3) methyl shift required for biosynthesis of the abeo-abietane core structure present in diterpenoid triepoxides and in several other plant diterpenoids. In combination with two CYPs of the CYP82D subfamily, four CYPs from T. wilfordii are shown to constitute the minimal set of biosynthetic genes that enables triptonide biosynthesis using Nicotiana benthamiana and Saccharomyces cerevisiae as heterologous hosts. In addition, co-expression of a specific T. wilfordii cytochrome b5 (Twcytb5-A) increases triptonide output more than 9-fold in S. cerevisiae and affords isolation and structure elucidation by NMR spectroscopic analyses of 18 diterpenoids, providing insights into the biosynthesis of diterpenoid triepoxides. Our findings pave the way for diterpenoid triepoxide production via fermentation.
Asunto(s)
Diterpenos , Tripterygium , Sistema Enzimático del Citocromo P-450/genética , Diterpenos/química , Saccharomyces cerevisiae/genética , Tripterygium/genética , TriterpenosRESUMEN
In a cross-continental research initiative, including researchers working in Australia and Denmark, and based on joint external funding by a 3-year grant from the Novo Nordisk Foundation, we have used DNA sequencing, extensive chemical profiling and molecular networking analyses across the entire Eremophila genus to provide new knowledge on the presence of natural products and their bioactivities using polypharmocological screens. Sesquiterpenoids, diterpenoids and dimers of branched-chain fatty acids with previously unknown chemical structures were identified. The collection of plant material from the Eremophila genus was carried out according to a 'bioprospecting agreement' with the Government of Western Australia. We recognize that several Eremophila species hold immense cultural significance to Australia's First Peoples. In spite of our best intentions to ensure that new knowledge gained about the genus Eremophila and any potential future benefits are shared in an equitable manner, in accordance with the Nagoya Protocol, we encounter serious dilemmas and potential conflicts in making benefit sharing with Australia's First Peoples a reality.
Asunto(s)
Diterpenos , Scrophulariaceae , AustraliaRESUMEN
Marine myxobacteria present a virtually unexploited reservoir for the discovery of natural products with diverse biological functions and novel chemical scaffolds. We report here the isolation and structure elucidation of eight new deoxyenhygrolides (1-8) from the marine myxobacterium Plesiocystis pacifica DSM 14875T. The herein described deoxyenhygrolides C-J (1-8) feature a butenolide core with an ethyl residue at C-3 of the γ-lactone in contrast to the previously described derivatives, deoxyenhygrolides A and B, which feature an isobutyl residue at this position. The butenolide core is 2,4-substituted with a benzyl (1, 2 and 7), benzoyl (3 and 4) or benzyl alcohol (5, 6 and 8) moiety in the 2-position and a benzylidene (1-6) or benzylic hemiketal (7 and 8) in the 4-position. The description of these new deoxyenhygrolide derivatives, alongside genomic in silico investigation regarding putative biosynthetic genes, provides some new puzzle pieces on how this natural product class might be formed by marine myxobacteria.
Asunto(s)
4-Butirolactona/análogos & derivados , Myxococcales , 4-Butirolactona/biosíntesis , 4-Butirolactona/química , Animales , Organismos AcuáticosRESUMEN
Eremophila (Scrophulariaceae) is a genus of Australian desert plants, which have been used by Australian Aboriginal people for various medicinal purposes. Crude extracts of the leaf resin of Eremophila glabra (R.Br.) Ostenf. showed α-glucosidase and protein tyrosine phosphatase 1B (PTP1B) inhibitory activity with IC50 values of 19.3 ± 1.2 µg/mL and 11.8 ± 2.1 µg/mL, respectively. Dual α-glucosidase/PTP1B high-resolution inhibition profiling combined with HPLC-PDA-HRMS and NMR were used to isolate and identify the compounds providing these activities. This resulted in isolation of seven undescribed serrulatane diterpenoids, eremoglabrane A-G, together with nine previously identified serrulatane diterpenoids and flavonoids. Three of the serrulatane diterpenoids showed PTP1B inhibitory activities with IC50 values from 63.8 ± 5.8 µM to 104.5 ± 25.9 µM.
Asunto(s)
Diterpenos , Scrophulariaceae , Australia , Diterpenos/química , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Scrophulariaceae/químicaRESUMEN
Thirteen previously undescribed chromene meroterpenoids, capitachromenic acids A-M (3-6, 7a, 7b, 8a, 8b, 9a, 9b, 10a, 10b, and 11b), were identified from an ethyl acetate extract of Rhododendron capitatum, using dual high-resolution α-glucosidase and PTP1B inhibition profiling in combination with HPLC-PDA-HRMS-SPE-NMR. In addition, one known chromene meroterpenoid, daurichromenic acid (15), and its biosynthetic precursor, grifolic acid (12), two C-methylated flavanones, (2S)-5,7,4'-trihydroxy-8-methylflavanone (1) and farrerol (2), and two triterpenoids, oleanolic acid (14a) and ursolic acid (14b), were identified. New structures were elucidated by extensive 1D and 2D NMR analysis, and absolute configurations of new chromene meroterpenoids were assigned by analysis of their ECD spectra on the basis of the empirical chromane helicity rule and from Rh2(OCOCF3)4-induced ECD spectra by applying the bulkiness rule. Compounds 5, 9a, 9b, 12, and 15 showed α-glucosidase inhibitory activity with IC50 values ranging from 8.0 to 93.5 µM, while compounds 3, 5, 8b, 9a, 9b, 10b, 11b, 12, and 15 showed PTP1B inhibitory activity with IC50 values ranging from 2.5 to 68.1 µM.
Asunto(s)
Inhibidores de Glicósido Hidrolasas/farmacología , Hipoglucemiantes/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Rhododendron/química , Terpenos/farmacología , China , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Hipoglucemiantes/aislamiento & purificación , Estructura Molecular , Fitoquímicos/farmacología , Componentes Aéreos de las Plantas/química , Terpenos/aislamiento & purificación , alfa-GlucosidasasRESUMEN
Crude ethyl acetate extract of Gerbera piloselloides (L.) Cass. was investigated by dual high-resolution PTP1B/α-glucosidase inhibition profiling and LC-PDA-HRMS. This indicated the presence of a series of unprecedented prenyl- and geranyl-substituted coumarin derivatives correlated with both α-glucosidase and PTP1B inhibitory activity. Repeated chromatographic separation targeting these compounds led to the isolation of 13 new compounds, of which ten could be isolated as both enantiomers after chiral separation. The structures of all isolated compounds were characterized by HRMS and extensive 1D and 2D NMR analysis. The absolute configurations of the isolated compounds were determined by comparison of experimental and calculated electronic circular dichroism spectra. Compound 6 features a rare furan-oxepane 5/7 ring system, possibly formed through addition of a geranyl unit to C-3 of 5-methylcoumarin, representing a new type of geranyl-substituted coumarin skeleton. Compounds 19 and 24 are the first examples of dimeric natural products consisting of both coumarin and chromone moieties.
Asunto(s)
Asteraceae/química , Dicroismo Circular , Cumarinas/química , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Neopreno/química , Vías Biosintéticas , Espectroscopía de Resonancia Magnética con Carbono-13 , Cumarinas/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , Conformación Molecular , Neopreno/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Espectroscopía de Protones por Resonancia MagnéticaRESUMEN
BACKGROUND: Eremophila R.Br. (Scrophulariaceae) is a diverse genus of plants with species distributed across semi-arid and arid Australia. It is an ecologically important genus that also holds cultural significance for many Indigenous Australians who traditionally use several species as sources of medicines. Structurally unusual diterpenoids, particularly serrulatane and viscidane-types, feature prominently in the chemical profile of many species and recent studies indicate that these compounds are responsible for much of the reported bioactivity. We have investigated the biosynthesis of diterpenoids in three species: Eremophila lucida, Eremophila drummondii and Eremophila denticulata subsp. trisulcata. RESULTS: In all studied species diterpenoids were localised to the leaf surface and associated with the occurrence of glandular trichomes. Trichome-enriched transcriptome databases were generated and mined for candidate terpene synthases (TPS). Four TPSs with diterpene biosynthesis activity were identified: ElTPS31 and ElTPS3 from E. lucida were found to produce (3Z,7Z,11Z)-cembratrien-15-ol and 5-hydroxyviscidane, respectively, and EdTPS22 and EdtTPS4, from E. drummondii and E. denticulata subsp. trisulcata, respectively, were found to produce 8,9-dihydroserrulat-14-ene which readily aromatized to serrulat-14-ene. In all cases, the identified TPSs used the cisoid substrate, nerylneryl diphosphate (NNPP), to form the observed products. Subsequently, cis-prenyl transferases (CPTs) capable of making NNPP were identified in each species. CONCLUSIONS: We have elucidated two biosynthetic steps towards three of the major diterpene backbones found in this genus. Serrulatane and viscidane-type diterpenoids are promising candidates for new drug leads. The identification of an enzymatic route to their synthesis opens up the possibility of biotechnological production, making accessible a ready source of scaffolds for further modification and bioactivity testing.
Asunto(s)
Diterpenos/metabolismo , Eremophila (Planta)/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Especificidad de la EspecieRESUMEN
Eremophila bignoniiflora is a shrub distributed throughout inland northern and eastern Australia, and it has been used in several medicinal applications by some Australian Aboriginal people. In our continued search for anti-diabetic constituents from natural resources, the crude ethyl acetate extract of E. bignoniiflora was found to have protein-tyrosine phosphatase 1B (PTP1B) inhibitory activity with an IC50 value of 23.9⯱â¯1.9⯵g/mL. High-resolution PTP1B inhibition profiling combined with HRMS and NMR were subsequently used to investigate the individual compounds responsible for the observed bioactivity of the crude extract. This led to identification of five undescribed 2(5H)-furanone sesquiterpenes, together with 13 flavonoids and phenolic compounds. Dose-response curves of the isolated compounds revealed that two 2(5H)-furanone sesquiterpene cinnamates and three flavonoids exhibited moderate PTP1B inhibitory activity with IC50 values from 41.4⯱â¯1.4 to 154.5⯱â¯8.9⯵M.
Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Furanos/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Scrophulariaceae/química , Sesquiterpenos/química , Sesquiterpenos/farmacologíaRESUMEN
Diabetes mellitus is a widespread metabolic disorder that affects millions of people around the world. The disease is a major burden on both economic and social levels, and there is a need for improved drugs with fewer side effects in the management of the disease. Current methods for isolation of anti-diabetic lead compounds from complex mixtures suffer from low resolution and sensitivity, and there is a need for improved alternatives. In this work, magnetic ligand fishing combined with high-performance liquid chromatography - photodiode-array detection - high-resolution mass spectrometry - solid-phase extraction - nuclear magnetic resonance spectroscopy (HPLC-PDA-HRMS-SPE-NMR) was developed and validated, with the aim of accelerating discovery of natural products targeting α-amylase. The enzyme was successfully immobilized onto magnetic beads and retained its catalytic activity for a period of 75 days, and the specificity of this method was successfully validated by testing the N-terminus coupled α-amylase immobilized magnetic beads on an artificial mixture. A proof of concept experiment, using a crude ethyl acetate extract of Ginkgo biloba leaves, proved that it was possible to fish out four α-amylase ligands. HPLC-PDA-HRMS-SPE-NMR analysis confirmed the presence of bilobetin, isoginkgetin, ginkgetin and sciadopitysin in the solutions resulting from α-amylase ligand fishing with Ginkgo biloba. IC50 curves revealed a reversed relationship between concentration of sciadopitysin and inhibition of α-amylase activity, suggesting that this compound activated the enzyme instead of inhibiting it.
Asunto(s)
Ginkgo biloba/química , Inhibidores de Glicósido Hidrolasas/farmacología , Extractos Vegetales/farmacología , alfa-Amilasas/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Humanos , Ligandos , Magnetismo , Microesferas , Conformación Molecular , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Relación Estructura-Actividad , alfa-Amilasas/metabolismoRESUMEN
Soil-living microbes are an important resource for the discovery of new natural products featuring great structural diversity that are reflective of the underlying biosynthetic pathways as well as incorporating a wide range of intriguing small-molecule building blocks. We report here the full structural elucidation, total synthesis, and biosynthesis of chloromyxamides, a new class of tetrapeptides that display an unprecedented 6-chloromethyl-5-methoxypipecolic acid (CMPA) substructure. Chemical synthesis-including an approach to access the CMPA unit-was pursued to confirm the structure of the chloromyxamides and enabled determination of the absolute configuration in the CMPA ring. A model for the nonribosomal assembly of chloromyxamides was devised on the basis of the combined evaluation of the biosynthetic gene cluster sequence and the feeding of stable isotope-labeled precursors. This provided insight into the formation of the various chloromyxamide derivatives and the biogenesis of the CMPA unit.
Asunto(s)
Amidas/química , Amidas/síntesis química , Myxococcales/metabolismo , Oligopéptidos/biosíntesis , Ácidos Pipecólicos/química , Amidas/metabolismo , FilogeniaRESUMEN
We report the synthesis of linear and branched (1â4)-d-galactans. Four tetrasaccharides and one pentasaccharide were accessed by adopting a procedure of regioselective ring opening of a 4,6-O-naphthylidene protecting group followed by glycosylation using phenyl thioglycoside donors. The binding of the linear pentasaccharide with galectin-3 is also investigated by the determination of a co-crystal structure. The binding of the (1â4)-linked galactan to Gal-3 highlights the oligosaccharides of pectic galactan, which is abundant in the human diet, as putative Gal-3 ligands.
RESUMEN
Thioviridamide is a structurally unique ribosomally synthesized and post-translationally modified peptide that contains several thioamide bonds and is active against a number of cancer cell lines. In the search for naturally occurring thioviridamide analogs, we employed genome mining that led to the identification of several related gene clusters. Chemical screening followed by cultivation and isolation yielded thioholgamides A and B, two new additions to the thioviridamide family with several amino acid substitutions, a different N-capping moiety, and with one less thioamide bond. Thioholgamides display improved cytotoxicity in the submicromolar range against a range of cell lines and an IC50 of 30 nM for thioholgamide A against HCT-116 cells. Herein, we report the isolation and structural elucidation of thioholgamides A and B, a proposed biosynthetic cluster for their production, and their bioactivities against a larger panel of microorganisms and cancer cell lines.
Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Streptomyces/metabolismo , Tioamidas/química , Tioamidas/farmacología , Antineoplásicos/metabolismo , Productos Biológicos/química , Productos Biológicos/metabolismo , Productos Biológicos/farmacología , Vías Biosintéticas , Línea Celular Tumoral , Células HCT116 , Humanos , Familia de Multigenes , Péptidos Cíclicos/genética , Péptidos Cíclicos/metabolismo , Procesamiento Proteico-Postraduccional , Streptomyces/química , Streptomyces/genética , Tioamidas/metabolismoRESUMEN
In the search for new secondary metabolites from myxobacteria, a strain from the genus Pyxidicoccus was investigated. This led to the identification of a new class of natural products showing structural novelty and interesting biological activity. Isolation and structure elucidation of two analogues led to the identification of pyxipyrroloneâ A and B, harboring the novel 3-methylene-2,3,4,5,6,7,8,9-octahydro-1H-benzo[e]isoindol-1-one scaffold. Mosher's ester analysis combined with NMR studies allowed the determination of all stereocenters but one. Genome sequencing of the producer strain led to the identification of a putative biosynthetic gene cluster for the pyxipyrrolones. The compounds showed activity against several cancer cell lines (µm range) with pyxipyrroloneâ B having 2- to 11-fold higher activity than A, although they differ only by one methylene group.
Asunto(s)
Productos Biológicos/química , Productos Biológicos/metabolismo , Myxococcales/química , Myxococcales/metabolismo , Pirroles/química , Pirroles/metabolismo , Conformación MolecularRESUMEN
A novel method, Spin-State-Selective (S(3)) HMBC, for accurate measurement of homonuclear coupling constants is introduced. As characteristic for S(3) techniques, S(3) HMBC yields independent subspectra corresponding to particular passive spin states and thus allows determination of coupling constants between detected spins and homonuclear coupling partners along with relative signs. In the presented S(3) HMBC experiment, spin-state selection occurs via large one-bond coupling constants ensuring high editing accuracy and unequivocal sign determination of the homonuclear long-range relative to the associated one-bond coupling constant. The sensitivity of the new experiment is comparable to that of regular edited HMBC and the accuracy of the J/RDC measurement is as usual for E.COSY and S(3)-type experiments independent of the size of the homonuclear coupling constant of interest. The merits of the method are demonstrated by an application to strychnine where thirteen J(HH) coupling constants not previously reported could be measured.
RESUMEN
This paper describes the discovery of novel α-L-fucosidases and evaluation of their potential to catalyse the transglycosylation reaction leading to production of fucosylated human milk oligosaccharides. Seven novel α-L-fucosidase-encoding genes were identified by functional screening of a soil-derived metagenome library and expressed in E. coli as recombinant 6xHis-tagged proteins. All seven fucosidases belong to glycosyl hydrolase family 29 (GH 29). Six of the seven α-L-fucosidases were substrate-inhibited, moderately thermostable and most hydrolytically active in the pH range 6-7, when tested with para-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) as the substrate. In contrast, one fucosidase (Mfuc6) exhibited a high pH optimum and an unusual sigmoidal kinetics towards pNP-Fuc substrate. When tested for trans-fucosylation activity using pNP-Fuc as donor, most of the enzymes were able to transfer fucose to pNP-Fuc (self-condensation) or to lactose. With the α-L-fucosidase from Thermotoga maritima and the metagenome-derived Mfuc5, different fucosyllactose variants including the principal fucosylated HMO 2'-fucosyllactose were synthesised in yields of up to ~6.4%. Mfuc5 was able to release fucose from xyloglucan and could also use it as a fucosyl-donor for synthesis of fucosyllactose. This is the first study describing the use of glycosyl hydrolases for the synthesis of genuine fucosylated human milk oligosaccharides.