Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biomedicines ; 10(2)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35203649

RESUMEN

Severe respiratory syndrome coronavirus-2 (SARS-CoV-2) is a highly contagious beta-class coronavirus. Although vaccinations have shown high efficacy, the emergence of novel variants of concern (VOCs) has already exhibited traits of immune evasion. Thus, the development of tailored antiviral medications for patients with incomplete, inefficient, or non-existent immunization, is essential. The attachment of viral surface proteins to the cell surface is the first crucial step in the viral replication cycle, which for SARS-CoV-2 is mediated by the high affinity interaction of the viral trimeric spike with the host cell surface-located human angiotensin converting enzyme-2 (hACE2). Here, we used a novel and efficient next generation sequencing (NGS) supported phage display strategy for the selection of a set of SARS-CoV-2 receptor binding domain (RBD)-targeting peptide ligands that bind to the target protein with low µM to nM dissociation constants. Compound CVRBDL-3 inhibits the SARS-CoV-2 spike protein association to hACE2 in a concentration-dependent manner for pre- as well as post-complex formation conditions. Further rational optimization yielded a CVRBDL-3 based divalent compound, which demonstrated inhibitory efficacy with an IC50 value of 47 nM. The obtained compounds were not only efficient for the different spike constructs from the originally isolated "wt" SARS-CoV-2, but also for B.1.1.7 mutant trimeric spike protein. Our work demonstrates that phage display-derived peptide ligands are potential fusion inhibitors of viral cell entry. Moreover, we show that rational optimization of a combination of peptide sequences is a potential strategy in the further development of therapeutics for the treatment of acute COVID-19.

2.
Cell Rep ; 36(4): 109433, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34273271

RESUMEN

The novel betacoronavirus severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) causes a form of severe pneumonia disease called coronavirus disease 2019 (COVID-19). To develop human neutralizing anti-SARS-CoV-2 antibodies, antibody gene libraries from convalescent COVID-19 patients were constructed and recombinant antibody fragments (scFv) against the receptor-binding domain (RBD) of the spike protein were selected by phage display. The antibody STE90-C11 shows a subnanometer IC50 in a plaque-based live SARS-CoV-2 neutralization assay. The in vivo efficacy of the antibody is demonstrated in the Syrian hamster and in the human angiotensin-converting enzyme 2 (hACE2) mice model. The crystal structure of STE90-C11 Fab in complex with SARS-CoV-2-RBD is solved at 2.0 Å resolution showing that the antibody binds at the same region as ACE2 to RBD. The binding and inhibition of STE90-C11 is not blocked by many known emerging RBD mutations. STE90-C11-derived human IgG1 with FcγR-silenced Fc (COR-101) is undergoing Phase Ib/II clinical trials for the treatment of moderate to severe COVID-19.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/virología , Humanos , Mutación/genética , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Dominios Proteicos/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
3.
Small GTPases ; 12(2): 122-132, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-31451035

RESUMEN

Cell migration frequently involves the formation of lamellipodial protrusions, the initiation of which requires Rac GTPases signalling to heteropentameric WAVE regulatory complex (WRC). While Rac-related RhoG and Cdc42 can potently stimulate lamellipodium formation, so far presumed to occur by upstream signalling to Rac activation, we show here that the latter can be bypassed by RhoG and Cdc42 given that WRC has been artificially activated. This evidence arises from generation of B16-F1 cells simultaneously lacking both Rac GTPases and WRC, followed by reconstitution of lamellipodia formation with specific Rho-GTPase and differentially active WRC variant combinations. We conclude that formation of canonical lamellipodia requires WRC activation through Rac, but can possibly be tuned, in addition, by WRC interactions with RhoG and Cdc42.


Asunto(s)
Seudópodos
4.
FEBS J ; 288(1): 244-261, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32255259

RESUMEN

Certain facultative anaerobes such as the opportunistic human pathogen Pseudomonas aeruginosa can respire on nitrate, a process generally known as denitrification. This enables denitrifying bacteria to survive in anoxic environments and contributes, for example, to the formation of biofilm, hence increasing difficulties in eradicating P. aeruginosa infections. A central step in denitrification is the reduction of nitrite to nitric oxide by nitrite reductase NirS, an enzyme that requires the unique cofactor heme d1 . While heme d1 biosynthesis is mostly understood, the role of the essential periplasmatic protein NirF in this pathway remains unclear. Here, we have determined crystal structures of NirF and its complex with dihydroheme d1 , the last intermediate of heme d1 biosynthesis. We found that NirF forms a bottom-to-bottom ß-propeller homodimer and confirmed this by multi-angle light and small-angle X-ray scattering. The N termini are adjacent to each other and project away from the core structure, which hints at simultaneous membrane anchoring via both N termini. Further, the complex with dihydroheme d1 allowed us to probe the importance of specific residues in the vicinity of the ligand binding site, revealing residues not required for binding or stability of NirF but essential for denitrification in experiments with complemented mutants of a ΔnirF strain of P. aeruginosa. Together, these data suggest that NirF possesses a yet unknown enzymatic activity and is not simply a binding protein of heme d1 derivatives. DATABASE: Structural data are available in PDB database under the accession numbers 6TV2 and 6TV9.


Asunto(s)
Proteínas Bacterianas/química , Hemo/análogos & derivados , Periplasma/genética , Pseudomonas aeruginosa/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Desnitrificación/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Eliminación de Gen , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Hemo/biosíntesis , Hemo/química , Modelos Moleculares , Periplasma/química , Periplasma/enzimología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/enzimología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Termodinámica
5.
Chembiochem ; 22(6): 1099-1110, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33145893

RESUMEN

CYP154C5 from Nocardia farcinica is a P450 monooxygenase able to hydroxylate a range of steroids with high regio- and stereoselectivity at the 16α-position. Using protein engineering and substrate modifications based on the crystal structure of CYP154C5, an altered regioselectivity of the enzyme in steroid hydroxylation had been achieved. Thus, conversion of progesterone by mutant CYP154C5 F92A resulted in formation of the corresponding 21-hydroxylated product 11-deoxycorticosterone in addition to 16α-hydroxylation. Using MD simulation, this altered regioselectivity appeared to result from an alternative binding mode of the steroid in the active site of mutant F92A. MD simulation further suggested that the entrance of water to the active site caused higher uncoupling in this mutant. Moreover, exclusive 15α-hydroxylation was observed for wild-type CYP154C5 in the conversion of 5α-androstan-3-one, lacking an oxy-functional group at C17. Overall, our data give valuable insight into the structure-function relationship of this cytochrome P450 monooxygenase for steroid hydroxylation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Ingeniería de Proteínas , Esteroides/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Dominio Catalítico , Sistema Enzimático del Citocromo P-450/genética , Hidroxilación , Cinética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Nocardia/metabolismo , Estereoisomerismo , Especificidad por Sustrato
6.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 8): 334-340, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32744244

RESUMEN

The ferredoxin reductase FdR9 from Thermobifida fusca, a member of the oxygenase-coupled NADH-dependent ferredoxin reductase (FNR) family, catalyses electron transfer from NADH to its physiological electron acceptor ferredoxin. It forms part of a putative three-component cytochrome P450 monooxygenase system in T. fusca comprising CYP222A1 and the [3Fe-4S]-cluster ferredoxin Fdx8 as well as FdR9. Here, FdR9 was overexpressed and purified and its crystal structure was determined at 1.9 Šresolution. The overall structure of FdR9 is similar to those of other members of the FNR family and is composed of an FAD-binding domain, an NAD-binding domain and a C-terminal domain. Activity measurements with FdR9 confirmed a strong preference for NADH as the cofactor. Comparison of the FAD- and NAD-binding domains of FdR9 with those of other ferredoxin reductases revealed the presence of conserved sequence motifs in the FAD-binding domain as well as several highly conserved residues involved in FAD and NAD cofactor binding. Moreover, the NAD-binding site of FdR9 contains a modified Rossmann-fold motif, GxSxxS, instead of the classical GxGxxG motif.


Asunto(s)
Proteínas Bacterianas/química , Coenzimas/química , Ferredoxinas/química , NAD/química , Oxidorreductasas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Coenzimas/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Ferredoxinas/genética , Ferredoxinas/metabolismo , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Modelos Moleculares , NAD/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Thermobifida/química , Thermobifida/enzimología
7.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 6): 250-256, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32510465

RESUMEN

A key step in anaerobic nitrate respiration is the reduction of nitrite to nitric oxide, which is catalysed by the cd1 nitrite reductase NirS in, for example, the Gram-negative opportunistic pathogen Pseudomonas aeruginosa. Each subunit of this homodimeric enzyme consists of a cytochrome c domain and an eight-bladed ß-propeller that binds the uncommon isobacteriochlorin heme d1 as an essential part of its active site. Although NirS has been well studied mechanistically and structurally, the focus of previous studies has been on the active heme d1-bound form. The heme d1-free form of NirS reported here, which represents a premature state of the reductase, adopts an open conformation with the cytochrome c domains moved away from each other with respect to the active enzyme. Further, the movement of a loop around Trp498 seems to be related to a widening of the propeller, allowing easier access to the heme d1-binding side. Finally, a possible link between the open conformation of NirS and flagella formation in P. aeruginosa is discussed.


Asunto(s)
Proteínas Bacterianas/química , Hemo/análogos & derivados , Nitrito Reductasas/química , Pseudomonas aeruginosa/enzimología , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Hemo/química , Hemo/metabolismo , Modelos Moleculares , Nitrito Reductasas/metabolismo , Conformación Proteica
8.
Acta Crystallogr D Struct Biol ; 76(Pt 4): 375-384, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32254062

RESUMEN

Monoheme c-type cytochromes are important electron transporters in all domains of life. They possess a common fold hallmarked by three α-helices that surround a covalently attached heme. An intriguing feature of many monoheme c-type cytochromes is their capacity to form oligomers by exchanging at least one of their α-helices, which is often referred to as 3D domain swapping. Here, the crystal structure of NirC, a c-type cytochrome co-encoded with other proteins involved in nitrite reduction by the opportunistic pathogen Pseudomonas aeruginosa, has been determined. The crystals diffracted anisotropically to a maximum resolution of 2.12 Š(spherical resolution of 2.83 Å) and initial phases were obtained by Fe-SAD phasing, revealing the presence of 11 NirC chains in the asymmetric unit. Surprisingly, these protomers arrange into one monomer and two different types of 3D domain-swapped dimers, one of which shows pronounced asymmetry. While the simultaneous observation of monomers and dimers probably reflects the interplay between the high protein concentration required for crystallization and the structural plasticity of monoheme c-type cytochromes, the identification of conserved structural motifs in the monomer together with a comparison with similar proteins may offer new leads to unravel the unknown function of NirC.


Asunto(s)
Proteínas de Transporte de Anión/química , Proteínas Bacterianas/química , Hemo/análogos & derivados , Pseudomonas aeruginosa/enzimología , Proteínas de Transporte de Anión/genética , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Hemo/química , Modelos Moleculares , Operón , Multimerización de Proteína , Estructura Terciaria de Proteína , Pseudomonas aeruginosa/genética
9.
Leukemia ; 34(2): 416-426, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31586149

RESUMEN

Mutations in isocitrate dehydrogenase 1 (IDH1) are found in 6% of AML patients. Mutant IDH produces R-2-hydroxyglutarate (R-2HG), which induces histone- and DNA-hypermethylation through the inhibition of epigenetic regulators, thus linking metabolism to tumorigenesis. Here we report the biochemical characterization, in vivo antileukemic effects, structural binding, and molecular mechanism of the inhibitor HMS-101, which inhibits the enzymatic activity of mutant IDH1 (IDH1mut). Treatment of IDH1mut primary AML cells reduced 2-hydroxyglutarate levels (2HG) and induced myeloid differentiation in vitro. Co-crystallization of HMS-101 and mutant IDH1 revealed that HMS-101 binds to the active site of IDH1mut in close proximity to the regulatory segment of the enzyme in contrast to other IDH1 inhibitors. HMS-101 also suppressed 2HG production, induced cellular differentiation and prolonged survival in a syngeneic mutant IDH1 mouse model and a patient-derived human AML xenograft model in vivo. Cells treated with HMS-101 showed a marked upregulation of the differentiation-associated transcription factors CEBPA and PU.1, and a decrease in cell cycle regulator cyclin A2. In addition, the compound attenuated histone hypermethylation. Together, HMS-101 is a unique inhibitor that binds to the active site of IDH1mut directly and is active in IDH1mut preclinical models.


Asunto(s)
Sitios de Unión/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Mutación/efectos de los fármacos , Animales , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Diferenciación Celular/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Histonas/metabolismo , Humanos , Isocitrato Deshidrogenasa/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Regulación hacia Arriba/efectos de los fármacos
10.
J Mol Biol ; 431(17): 3246-3260, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31173777

RESUMEN

Many bacteria can switch from oxygen to nitrogen oxides, such as nitrate or nitrite, as terminal electron acceptors in their respiratory chain. This process is called "denitrification" and enables biofilm formation of the opportunistic human pathogen Pseudomonas aeruginosa, making it more resilient to antibiotics and highly adaptable to different habitats. The reduction of nitrite to nitric oxide is a crucial step during denitrification. It is catalyzed by the homodimeric cytochrome cd1 nitrite reductase (NirS), which utilizes the unique isobacteriochlorin heme d1 as its reaction center. Although the reaction mechanism of nitrite reduction is well understood, far less is known about the biosynthesis of heme d1. The last step of its biosynthesis introduces a double bond in a propionate group of the tetrapyrrole to form an acrylate group. This conversion is catalyzed by the dehydrogenase NirN via a unique reaction mechanism. To get a more detailed insight into this reaction, the crystal structures of NirN with and without bound substrate have been determined. Similar to the homodimeric NirS, the monomeric NirN consists of an eight-bladed heme d1-binding ß-propeller and a cytochrome c domain, but their relative orientation differs with respect to NirS. His147 coordinates heme d1 at the proximal side, whereas His323, which belongs to a flexible loop, binds at the distal position. Tyr461 and His417 are located next to the hydrogen atoms removed during dehydrogenation, suggesting an important role in catalysis. Activity assays with NirN variants revealed the essentiality of His147, His323 and Tyr461, but not of His417.


Asunto(s)
Aminoácidos/metabolismo , Proteínas Bacterianas/química , Citocromos c/química , Oxidorreductasas/química , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Catálisis , Citocromos c/metabolismo , Hemo/análogos & derivados , Humanos , Modelos Moleculares , Óxido Nítrico/metabolismo , Nitrito Reductasas , Nitritos/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Conformación Proteica , Dominios Proteicos , Temperatura de Transición
11.
Sci Rep ; 9(1): 5106, 2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30911023

RESUMEN

HheG from Ilumatobacter coccineus is a halohydrin dehalogenase with synthetically useful activity in the ring opening of cyclic epoxides with various small anionic nucleophiles. This enzyme provides access to chiral ß-substituted alcohols that serve as building blocks in the pharmaceutical industry. Wild-type HheG suffers from low thermostability, which poses a significant drawback for potential applications. In an attempt to thermostabilize HheG by protein engineering, several single mutants at position 123 were identified which displayed up to 14 °C increased apparent melting temperatures and up to three-fold higher activity. Aromatic amino acids at position 123 resulted even in a slightly higher enantioselectivity. Crystal structures of variants T123W and T123G revealed a flexible loop opposite to amino acid 123. In variant T123G, this loop adopted two different positions resulting in an open or partially closed active site. Classical molecular dynamics simulations confirmed a high mobility of this loop. Moreover, in variant T123G this loop adopted a position much closer to residue 123 resulting in denser packing and increased buried surface area. Our results indicate an important role for position 123 in HheG and give first structural and mechanistic insight into the thermostabilizing effect of mutations T123W and T123G.


Asunto(s)
Hidrolasas/química , Hidrolasas/metabolismo , Cinética , Modelos Moleculares , Mutación/genética , Ingeniería de Proteínas , Estereoisomerismo , Especificidad por Sustrato
12.
Curr Biol ; 28(22): 3674-3684.e6, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30393033

RESUMEN

Cell migration often involves the formation of sheet-like lamellipodia generated by branched actin filaments. The branches are initiated when Arp2/3 complex [1] is activated by WAVE regulatory complex (WRC) downstream of small GTPases of the Rac family [2]. Recent structural studies defined two independent Rac binding sites on WRC within the Sra-1/PIR121 subunit of the pentameric WRC [3, 4], but the functions of these sites in vivo have remained unknown. Here we dissect the mechanism of WRC activation and the in vivo relevance of distinct Rac binding sites on Sra-1, using CRISPR/Cas9-mediated gene disruption of Sra-1 and its paralog PIR121 in murine B16-F1 cells combined with Sra-1 mutant rescue. We show that the A site, positioned adjacent to the binding region of WAVE-WCA mediating actin and Arp2/3 complex binding, is the main site for allosteric activation of WRC. In contrast, the D site toward the C terminus is dispensable for WRC activation but required for optimal lamellipodium morphology and function. These results were confirmed in evolutionarily distant Dictyostelium cells. Moreover, the phenotype seen in D site mutants was recapitulated in Rac1 E31 and F37 mutants; we conclude these residues are important for Rac-D site interaction. Finally, constitutively activated WRC was able to induce lamellipodia even after both Rac interaction sites were lost, showing that Rac interaction is not essential for membrane recruitment. Our data establish that physical interaction with Rac is required for WRC activation, in particular through the A site, but is not mandatory for WRC accumulation in the lamellipodium.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Dictyostelium/metabolismo , Complejos Multiproteicos/metabolismo , Seudópodos/fisiología , Proteína de Unión al GTP rac1/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Movimiento Celular , Dictyostelium/citología , Dictyostelium/genética , Ratones , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/fisiología , Neuropéptidos/antagonistas & inhibidores , Neuropéptidos/metabolismo , Conformación Proteica , Células Tumorales Cultivadas , Familia de Proteínas del Síndrome de Wiskott-Aldrich/química , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Proteínas de Unión al GTP rac/antagonistas & inhibidores , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1/antagonistas & inhibidores , Proteína RCA2 de Unión a GTP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA