Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Pediatr Surg Int ; 40(1): 87, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512700

RESUMEN

PURPOSE: This study aims to compare the fecal metabolome in post pull-through HD with and without HAEC patients and healthy young children using nuclear magnetic resonance (NMR) spectroscopy. METHODS: Fresh fecal samples were collected from children under 5 years of age in both post-pull-through HD patients and healthy Thai children. A total of 20 fecal samples were then analyzed using NMR spectroscopy. RESULTS: Thirty-four metabolites identified among HD and healthy children younger than 5 years were compared. HD samples demonstrated a significant decrease in acetoin, phenylacetylglutamine, and N-acetylornithine (corrected p value = 0.01, 0.04, and 0.004, respectively). Succinate and xylose significantly decreased in HD with HAEC group compared to HD without HAEC group (corrected p value = 0.04 and 0.02, respectively). Moreover, glutamine and glutamate metabolism, and alanine, aspartate, and glutamate metabolism were the significant pathways involved, with pathway impact 0.42 and 0.50, respectively (corrected p value = 0.02 and 0.04, respectively). CONCLUSION: Differences in class, quantity, and metabolism of protein and other metabolites in young children with HD after pull-through operation were identified. Most of the associated metabolic pathways were correlated with the amino acids metabolism, which is required to maintain intestinal integrity and function.


Asunto(s)
Enterocolitis , Enfermedad de Hirschsprung , Niño , Humanos , Lactante , Preescolar , Enfermedad de Hirschsprung/cirugía , Enterocolitis/cirugía , Intestinos , Heces/química , Glutamatos/análisis , Complicaciones Posoperatorias , Estudios Retrospectivos
2.
Cancers (Basel) ; 16(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38398194

RESUMEN

Cholangiocarcinomas (CCA) pose a complex challenge in oncology due to diverse etiologies, necessitating tailored therapeutic approaches. This review discusses the risk factors, molecular pathology, and current therapeutic options for CCA and explores the emerging strategies encompassing targeted therapies, immunotherapy, novel compounds from natural sources, and modulation of gut microbiota. CCA are driven by an intricate landscape of genetic mutations, epigenetic dysregulation, and post-transcriptional modification, which differs based on geography (e.g., for liver fluke versus non-liver fluke-driven CCA) and exposure to environmental carcinogens (e.g., exposure to aristolochic acid). Liquid biopsy, including circulating cell-free DNA, is a potential diagnostic tool for CCA, which warrants further investigations. Currently, surgical resection is the primary curative treatment for CCA despite the technical challenges. Adjuvant chemotherapy, including cisplatin and gemcitabine, is standard for advanced, unresectable, or recurrent CCA. Second-line therapy options, such as FOLFOX (oxaliplatin and 5-FU), and the significance of radiation therapy in adjuvant, neoadjuvant, and palliative settings are also discussed. This review underscores the need for personalized therapies and demonstrates the shift towards precision medicine in CCA treatment. The development of targeted therapies, including FDA-approved drugs inhibiting FGFR2 gene fusions and IDH1 mutations, is of major research focus. Investigations into immune checkpoint inhibitors have also revealed potential clinical benefits, although improvements in survival remain elusive, especially across patient demographics. Novel compounds from natural sources exhibit anti-CCA activity, while microbiota dysbiosis emerges as a potential contributor to CCA progression, necessitating further exploration of their direct impact and mechanisms through in-depth research and clinical studies. In the future, extensive translational research efforts are imperative to bridge existing gaps and optimize therapeutic strategies to improve therapeutic outcomes for this complex malignancy.

3.
Gut ; 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38050079

RESUMEN

OBJECTIVES: Cholangiocarcinoma (CCA) is a heterogeneous malignancy with high mortality and dismal prognosis, and an urgent clinical need for new therapies. Knowledge of the CCA epigenome is largely limited to aberrant DNA methylation. Dysregulation of enhancer activities has been identified to affect carcinogenesis and leveraged for new therapies but is uninvestigated in CCA. Our aim is to identify potential therapeutic targets in different subtypes of CCA through enhancer profiling. DESIGN: Integrative multiomics enhancer activity profiling of diverse CCA was performed. A panel of diverse CCA cell lines, patient-derived and cell line-derived xenografts were used to study identified enriched pathways and vulnerabilities. NanoString, multiplex immunohistochemistry staining and single-cell spatial transcriptomics were used to explore the immunogenicity of diverse CCA. RESULTS: We identified three distinct groups, associated with different etiologies and unique pathways. Drug inhibitors of identified pathways reduced tumour growth in in vitro and in vivo models. The first group (ESTRO), with mostly fluke-positive CCAs, displayed activation in estrogen signalling and were sensitive to MTOR inhibitors. Another group (OXPHO), with mostly BAP1 and IDH-mutant CCAs, displayed activated oxidative phosphorylation pathways, and were sensitive to oxidative phosphorylation inhibitors. Immune-related pathways were activated in the final group (IMMUN), made up of an immunogenic CCA subtype and CCA with aristolochic acid (AA) mutational signatures. Intratumour differences in AA mutation load were correlated to intratumour variation of different immune cell populations. CONCLUSION: Our study elucidates the mechanisms underlying enhancer dysregulation and deepens understanding of different tumourigenesis processes in distinct CCA subtypes, with potential significant therapeutics and clinical benefits.

4.
PeerJ ; 11: e16512, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025687

RESUMEN

Background: Niclosamide is an oral anthelminthic drug that has been used for treating tapeworm infections. Its mechanism involves the disturbance of mitochondrial membrane potential that in turn inhibits oxidative phosphorylation leading to ATP depletion. To date, niclosamide has been validated as the potent anti-cancer agent against several cancers. However, the molecular mechanisms underlying the effects of niclosamide on the liver fluke Opisthorchis viverrini (Ov)-associated cholangiocarcinoma (CCA) cell functions remain to be elucidated. The aims of this study were to investigate the effects of niclosamide on CCA cell proliferation and on metabolic phenoconversion through the alteration of metabolites associated with mitochondrial function in CCA cell lines. Materials and Methods: The inhibitory effect of niclosamide on CCA cells was determined using SRB assay. A mitochondrial membrane potential using tetramethylrhodamine, ethyl ester-mitochondrial membrane potential (TMRE-MMP) assay was conducted. Liquid chromatography-mass spectrometry-based metabolomics was employed to investigate the global metabolic changes upon niclosamide treatment. ATP levels were measured using CellTiter-Glo® luminescent cell viability assay. NAD metabolism was examined by the NAD+/NADH ratio. Results: Niclosamide strongly inhibited CCA cell growth and reduced the MMP of CCA cells. An orthogonal partial-least square regression analysis revealed that the effects of niclosamide on suppressing cell viability and MMP of CCA cells were significantly associated with an increase in niacinamide, a precursor in NAD synthesis that may disrupt the electron transport system leading to suppression of NAD+/NADH ratio and ATP depletion. Conclusion: Our findings unravel the mode of action of niclosamide in the energy depletion that could potentially serve as the promising therapeutic strategy for CCA treatment.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Opistorquiasis , Animales , Niclosamida/farmacología , Opistorquiasis/complicaciones , NAD/metabolismo , Potencial de la Membrana Mitocondrial , Colangiocarcinoma/tratamiento farmacológico , Conductos Biliares Intrahepáticos/metabolismo , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Adenosina Trifosfato/metabolismo
5.
Cancers (Basel) ; 15(19)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37835526

RESUMEN

BACKGROUND: The mismatch repair (MMR) system prevents DNA mutation; therefore, deficient MMR protein (dMMR) expression causes genetic alterations and microsatellite instability (MSI). dMMR is correlated with a good outcome and treatment response in various cancers; however, the situation remains ambiguous in cholangiocarcinoma (CCA). This study aims to evaluate the prevalence of dMMR and investigate the correlation with clinicopathological features and the survival of CCA patients after resection. MATERIALS AND METHODS: Serum and tissues were collected from CCA patients who underwent resection from January 2005 to December 2017. Serum OV IgG was examined using ELISA. The expression of MMR proteins MLH1, MSH2, MSH6 and PMS2 was investigated by immunohistochemistry; subsequently, MMR assessment was evaluated as either proficient or as deficient by pathologists. The clinicopathological features and MMR status were compared using the Chi-square test. Univariate and multivariate analyses were conducted to identify prognostic factors. RESULTS: Among the 102 CCA patients, dMMR was detected in 22.5%. Survival analysis revealed that dMMR patients had better survival than pMMR (HR = 0.50, p = 0.008). In multivariate analysis, dMMR was an independent factor for a good prognosis in CCA patients (HR = 0.58, p = 0.041), especially at an early stage (HR = 0.18, p = 0.027). Moreover, subgroup analysis showed dMMR patients who received adjuvant chemotherapy had better survival than surgery alone (HR = 0.28, p = 0.012). CONCLUSION: This study showed a high prevalence of dMMR in cholangiocarcinoma with dMMR being the independent prognostic factor for good survival, especially in early-stage CCA and for patients who received adjuvant chemotherapy. dMMR should be the marker for selecting patients to receive a specific adjuvant treatment after resection for CCA.

6.
Recent Results Cancer Res ; 219: 53-90, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37660331

RESUMEN

Cholangiocarcinoma (CCA) is a malignant tumor of the biliary tree that is classified into three groups based on its anatomic location: intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA). Perihilar CCA is the most common type and accounts for 50-60% of CCA cases. It is followed by distal CCA and then intrahepatic CCA that account for 20-30% and 10-20% of cases, respectively. This chapter discusses the hallmarks of liver fluke related CCA and explores insights into drug target possibilities.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Discinesias , Fasciola hepatica , Animales , Humanos , Colangiocarcinoma/tratamiento farmacológico , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Conductos Biliares Intrahepáticos
7.
PeerJ ; 11: e15386, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187520

RESUMEN

Background: The liver fluke Opisthorchis viverrini (OV), which subsequently inhabits the biliary system and results in periductal fibrosis (PDF), is one of the primarily causes of cholangiocarcinoma (CCA), a bile duct cancer with an exceptionally high incidence in the northeast of Thailand and other Greater Mekong Subregion (GMS) countries. Insights in fecal metabolic changes associated with PDF and CCA are required for further molecular research related to gut health and potential diagnostic biological marker development. Methods: In this study, nuclear magnetic resonance (NMR) metabolomics was applied for fecal metabolic phenotyping from 55 fecal water samples across different study groups including normal bile duct, PDF and CCA groups. Results: By using NMR spectroscopy-based metabolomics, fecal metabolic profiles of patients with CCA or PDF and of individuals with normal bile duct have been established with a total of 40 identified metabolites. Further multivariate statistical analysis and hierarchical clustering heat map have demonstrated the PDF- and CCA-specific metabotypes through various altered metabolite groups including amino acids, alcohols, amines, anaerobic glycolytic metabolites, fatty acids, microbial metabolites, sugar, TCA cycle intermediates, tryptophan catabolism substrates, and pyrimidine metabolites. Compared to the normal bile duct group, PDF individuals showed the significantly elevated relative concentrations of fecal ethanol, glycine, tyrosine, and N-acetylglucosamine whereas CCA patients exhibited the remarkable fecal metabolic changes that can be evident through the increased relative concentrations of fecal uracil, succinate, and 5-aminopentanoate. The prominent fecal metabolic alterations between CCA and PDF were displayed by the reduction of relative concentration of methanol observed in CCA. The metabolic alterations associated with PDF and CCA progression have been proposed with the involvement of various metabolic pathways including TCA cycle, ethanol biogenesis, hexamine pathway, methanol biogenesis, pyrimidine metabolism, and lysine metabolism. Among them, ethanol, methanol, and lysine metabolism strongly reflect the association of gut-microbial host metabolic crosstalk in PDF and/or CCA patients. Conclusion: The PDF- and CCA-associated metabotypes have been investigated displaying their distinct fecal metabolic patterns compared to that of normal bile duct group. Our study also demonstrated that the perturbation in co-metabolism of host and gut bacteria has been involved from the early step since OV infection to CCA tumorigenesis.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Microbioma Gastrointestinal , Animales , Humanos , Lisina , Metanol , Espectroscopía de Protones por Resonancia Magnética , Factores de Riesgo , Fibrosis , Colangiocarcinoma/diagnóstico , Neoplasias de los Conductos Biliares/diagnóstico , Conductos Biliares Intrahepáticos/patología
8.
Front Microbiol ; 14: 1052352, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37032902

RESUMEN

Infectious diseases caused by filarial nematodes are major health problems for humans and animals globally. Current treatment using anti-helminthic drugs requires a long treatment period and is only effective against the microfilarial stage. Most species of filarial nematodes harbor a specific strain of Wolbachia bacteria, which are essential for the survival, development, and reproduction of the nematodes. This parasite-bacteria obligate symbiosis offers a new angle for the cure of filariasis. In this study, we utilized publicly available genome data and putative protein sequences from seven filarial nematode species and their symbiotic Wolbachia to screen for protein-protein interactions that could be a novel target against multiple filarial nematode species. Genome-wide in silico screening was performed to predict molecular interactions based on co-evolutionary signals. We identified over 8,000 pairs of gene families that show evidence of co-evolution based on high correlation score and low false discovery rate (FDR) between gene families and obtained a candidate list that may be keys in filarial nematode-Wolbachia interactions. Functional analysis was conducted on these top-scoring pairs, revealing biological processes related to various signaling processes, adult lifespan, developmental control, lipid and nucleotide metabolism, and RNA modification. Furthermore, network analysis of the top-scoring genes with multiple co-evolving pairs suggests candidate genes in both Wolbachia and the nematode that may play crucial roles at the center of multi-gene networks. A number of the top-scoring genes matched well to known drug targets, suggesting a promising drug-repurposing strategy that could be applicable against multiple filarial nematode species.

9.
Sci Rep ; 13(1): 3072, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810897

RESUMEN

The three-dimensional multicellular spheroid (3D MCS) model has been employed in cholangiocarcinoma research as it generates 3D architecture and includes more physiological relevance with the multicellular arrangement. However, it is also essential to explain the molecular signature in this microenvironment and its structural complexity. The results indicated that poorly differentiated CCA cell lines were unable to form 3D MCS due to the lack of cell adhesion molecules with more mesenchymal marker expression. The well-differentiated CCA and cholangiocyte cell lines were able to develop 3D MCSs with round shapes, smooth perimeter, and cell adhesion molecules that led to the hypoxic and oxidative microenvironment detected. For MMNK-1, KKU-213C, and KKU-213A MCSs, the proteo-metabolomic analysis showed proteins and metabolic products altered compared to 2D cultures, including cell-cell adhesion molecules, energy metabolism-related enzymes and metabolites, and oxidative-related metabolites. Therefore, the 3D MCSs provide different physiological states with different phenotypic signatures compared to 2D cultures. Considering the 3D model mimics more physiological relevance, it might lead to an alternate biochemical pathway, targeting to improve drug sensitivity for CCA treatment.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Línea Celular Tumoral , Colangiocarcinoma/patología , Estrés Oxidativo , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/patología , Hipoxia/metabolismo , Microambiente Tumoral
10.
Front Pharmacol ; 13: 897368, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091805

RESUMEN

Cancer-associated fibroblasts (CAFs) are the dominant component of the tumor microenvironment (TME) that can be beneficial to the generation and progression of cancer cells leading to chemotherapeutic failure via several mechanisms. Nevertheless, the roles of CAFs on anti-cancer drug response need more empirical evidence in cholangiocarcinoma (CCA). Herein, we examined the oncogenic roles of CAFs on gemcitabine resistance in CCA cells mediated via IL-6/STAT3 activation. Our findings showed that CCA-derived CAFs promote cell viability and enhance gemcitabine resistance in CCA cells through the activation of IL-6/STAT3 signaling. High expression of IL-6R was correlated with a poor overall survival rate and gemcitabine resistance in CCA, indicating that IL-6R can be a prognostic or predictive biomarker for the chemotherapeutic response of CCA patients. Blockade of IL-6R on CCA cells by tocilizumab, an IL-6R humanized antihuman monoclonal antibody, contributed to inhibition of the CAF-CCA interaction leading to enhancement of gemcitabine sensitivity in CCA cells. The results of this study should be helpful for modifying therapeutic regimens aimed at targeting CAF interacting with cancer cells resulting in the suppression of the tumor progression but enhancement of drug sensitivity.

11.
PeerJ ; 10: e13876, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35990899

RESUMEN

Background: Cholangiocarcinoma (CCA) is a malignancy of the cholangiocytes. One of the major issues regarding treatment for CCA patients is the development of chemotherapeutic resistance. Recently, the association of intratumoral bacteria with chemotherapeutic response has been reported in many cancer types. Method: In the present study, we aimed to investigate the association between the intratumoral microbiome and its function on gemcitabine and cisplatin response in CCA tissues using 16S rRNA sequencing and 1H NMR spectroscopic analysis. Result: The results of 16S rRNA sequencing demonstrated that Gammaproteobacteria were significantly higher in both gemcitabine- and cisplatin-resistance groups compared to sensitive groups. In addition, intratumoral microbial diversity and abundance were significantly different compared between gemcitabine-resistant and sensitive groups. Furthermore, the metabolic phenotype of the low dose gemcitabine-resistant group significantly differed from that of low dose gemcitabine-sensitive group. Increased levels of acetylcholine, adenine, carnitine and inosine were observed in the low dose gemcitabine-resistant group, while the levels of acetylcholine, alpha-D-glucose and carnitine increased in the low dose cisplatin-resistant group. We further performed the intergrative microbiome-metabolome analysis and revealed a correlation between the intratumoral bacterial and metabolic profiles which reflect the chemotherapeutics resistance pattern in CCA patients. Conclusion: Our results demonstrated insights into the disruption of the microbiome and metabolome in the progression of chemotherapeutic resistance. The altered microbiome-metabolome fingerprints could be used as predictive markers for drug responses potentially resulting in the development of an appropriate chemotherapeutic drug treatment plan for individual CCA patients.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Desoxicitidina/farmacología , ARN Ribosómico 16S/genética , Cisplatino/farmacología , Acetilcolina/metabolismo , Resistencia a Antineoplásicos/genética , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Línea Celular Tumoral , Gemcitabina , Colangiocarcinoma/tratamiento farmacológico , Conductos Biliares Intrahepáticos/metabolismo , Metaboloma
12.
Plants (Basel) ; 11(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35956472

RESUMEN

The potential benefits of natural plant extracts have received attention in recent years, encouraging the development of natural products that effectively treat various diseases. This is the first report on establishing callus and cell suspension cultures of Rhinacanthus nasutus (L.) Kurz. A yellow friable callus was successfully induced from in vitro leaf explants on Murashige and Skoog medium supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid and 1 mg/L 1-naphthalene acetic acid. A selected friable callus line was used to establish the cell suspension culture with the same medium. The antioxidant assays showed that the leaf- and ethanolic-suspension-cultured cell (SCC) extracts exhibited high antioxidant potential. In addition, the in vitro cytotoxicity revealed by the MTT assay demonstrated potent antiproliferative effects against the oral cancer cell lines ORL-48 and ORL-136 in a dose-dependent manner. Several groups of compounds, including terpenoids, phenolics, flavonoids, quinones, and stilbenes, were identified by UHPLC-QToF-MS, with the same compounds detected in leaf and SCC extracts, including austroinulin, lucidenic acid, esculetin, embelin, and quercetin 3-(2″-p-hydroxybenzoyl-4″-p-coumarylrhamnoside). The present study suggests the value of further investigations for phytochemical production using R. nasutus cell suspension culture.

13.
Front Public Health ; 10: 766023, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223723

RESUMEN

Gemcitabine and cisplatin serve as appropriate treatments for patients with cholangiocarcinoma (CCA). Our previous study using histoculture drug response assay (HDRA), demonstrated individual response patterns to gemcitabine and cisplatin. The current study aimed to identify predictive biomarkers for gemcitabine and cisplatin sensitivity in tissues and sera from patients with CCA using metabolomics. Metabolic signatures of patients with CCA were correlated with their HDRA response patterns. The tissue metabolic signatures of patients with CCA revealed the inversion of the TCA cycle that is evident with increased levels of citrate and amino acid backbones as TCA cycle intermediates, and glucose which corresponds to cancer stem cell (CSC) properties. The protein expression levels of CSC markers were examined on tissues and showed the significantly inverse association with the responses of patients to cisplatin. Moreover, the elevation of ethanol level was observed in gemcitabine- and cisplatin-sensitive group. In serum, a lower level of glucose but a higher level of methylguanidine was observed in the gemcitabine-responders as non-invasive predictive biomarker for gemcitabine sensitivity. Collectively, our findings indicate that these metabolites may serve as the predictive biomarkers in clinical practice which not only predict the chemotherapy response in patients with CCA but also minimize the adverse effect from chemotherapy.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Biomarcadores , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Cisplatino/uso terapéutico , Desoxicitidina/análogos & derivados , Glucosa/uso terapéutico , Humanos , Gemcitabina
14.
Sci Rep ; 11(1): 23316, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857836

RESUMEN

Black soldier fly (BSF, Hermetia illucens) is popular for its applications in animal feed, waste management and antimicrobial peptide source. The major advantages of BSF larva include their robust immune system and high nutritional content that can be further developed into more potential agricultural and medical applications. Several strategies are now being developed to exploit their fullest capabilities and one of these is the immunity modulation using bacterial challenges. The mechanism underlying metabolic responses of BSF to different bacteria has, however, remained unclear. In the current study, entometabolomics was employed to investigate the metabolic phenoconversion in response to either Escherichia coli, Staphylococcus aureus, or combined challenges in BSF larva. We have, thus far, characterised 37 metabolites in BSF larva challenged with different bacteria with the major biochemical groups consisting of amino acids, organic acids, and sugars. The distinct defense mechanism-specific metabolic phenotypes were clearly observed. The combined challenge contributed to the most significant metabolic phenoconversion in BSF larva with the dominant metabolic phenotypes induced by S. aureus. Our study suggested that the accumulation of energy-related metabolites provided by amino acid catabolism is the principal metabolic pathway regulating the defense mechanism. Therefore, combined challenge is strongly recommended for raising BSF immunity as it remarkably triggered amino acid metabolisms including arginine and proline metabolism and alanine, aspartate and glutamate metabolism along with purine metabolism and pyruvate metabolism that potentially result in the production of various nutritional and functional metabolites.


Asunto(s)
Aminoácidos/metabolismo , Dípteros/metabolismo , Dípteros/microbiología , Alimentación Animal , Animales , Arginina/metabolismo , Escherichia coli , Ácido Glutámico/metabolismo , Larva/metabolismo , Larva/microbiología , Fenotipo , Prolina/metabolismo , Purinas/metabolismo , Staphylococcus aureus , Administración de Residuos
15.
Front Public Health ; 9: 766455, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34950627

RESUMEN

Pyrvinium pamoate (PP), an FDA-approved anthelmintic drug, has been validated as a highly potent anti-cancer agent and patented recently as a potential chemotherapeutic drug for various cancers. The aims of this study were, therefore, to investigate the ability of PP in anti-proliferative activity and focused on the lipid profiles revealing the alteration of specific lipid species in the liver fluke Opisthorchis viverrini (Ov)-associated cholangiocarcinoma (CCA) cells. PP inhibited CCA cell viability through suppressing mitochondrial membrane potential (MMP) and ATP productions, leading to apoptotic cell death. Liquid chromatography-mass spectrometry combined with chemometrics was performed to investigate lipid alteration during PP-induced apoptosis. The lipidomic analyses showed the altered lipid signatures of CCA cell types including S-acetyldihydrolipoamide, methylselenopyruvate, and triglycerides that were increased in PP-treated CCA cells. In contrast, the levels of sphinganine and phosphatidylinositol were lower in the PP-treated group compared with its counterpart. The orthogonal partial-least squares regression analysis revealed that PP-induced MMP dysfunction, leading to remarkably reduced ATP level, was significantly associated with triglyceride (TG) accumulation observed in PP-treated CCA cells. Our findings indicate that PP could suppress the MMP function, which causes inhibition of CCA cell viability through lipid production, resulting in apoptotic induction in CCA cells. These findings provide an anti-cancer mechanism of PP under apoptotic induction ability that may serve as the alternative approach for CCA treatment.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Adenosina Trifosfato/metabolismo , Neoplasias de los Conductos Biliares/complicaciones , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/etiología , Colangiocarcinoma/metabolismo , Lipidómica , Lípidos , Potencial de la Membrana Mitocondrial , Compuestos de Pirvinio
16.
Front Pharmacol ; 12: 696961, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421595

RESUMEN

An aberrant regulation of lipid metabolism is involved in the pathogenesis and progression of cancer. Up-regulation of lipid biosynthesis enzymes, including acetyl-CoA carboxylase (ACC), fatty acid synthase (FASN) and HMG-CoA reductase (HMGCR), has been reported in many cancers. Therefore, elucidating lipid metabolism changes in cancer is essential for the development of novel therapeutic targets for various human cancers. The current study aimed to identify the abnormal expression of lipid-metabolizing enzymes in cholangiocarcinoma (CCA) and to evaluate whether they can be used as the targets for CCA treatment. Our study demonstrated that a high expression of FASN was significantly correlated with the advanced stage in CCA patients. In addition, survival analysis showed that high expression of FASN and HMGCR was correlated with shorter survival of CCA patients. Furthermore, FASN knockdown inhibited the growth, migration and invasion in CCA cell lines, KKU055 and KKU213, as well as induced cell cycle arrest and apoptosis in the CCA cell lines. In addition, metabolomics study further revealed that purine metabolism was the most relevant pathway involved in FASN knockdown. Adenosine diphosphate (ADP), glutamine and guanine levels significantly increased in KKU213 cells while guanine and xanthine levels remarkably increased in KKU055 cells showing a marked difference between the control and FASN knockdown groups. These findings provide new insights into the mechanisms associated with FASN knockdown in CCA cell lines and suggest that targeting FASN may serve as a novel CCA therapeutic strategy.

17.
Cancer Metab ; 9(1): 30, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34348794

RESUMEN

BACKGROUND: Cholangiocarcioma (CCA) treatment is challenging because most of the patients are diagnosed when the disease is advanced, and cancer recurrence is the main problem after treatment, leading to low survival rates. Therefore, our understanding of the mechanism underlying CCA recurrence is essential in order to prevent CCA recurrence and improve patient outcomes. METHODS: We performed 1H-NMR and UPLC-MS-based metabolomics on the CCA serum. The differential metabolites were further analyzed using pathway analysis and potential biomarker identification. RESULTS: At an early stage, the metabolites involved in energy metabolisms, such as pyruvate metabolism, and the TCA cycle, are downregulated, while most lipids, including TGs, PCs, PEs, and PAs, are upregulated in recurrence patients. This metabolic feature has been described in cancer stem-like cell (CSC) metabolism. In addition, the CSC markers CD44v6 and CD44v8-10 are associated with CD36 (a protein involved in lipid uptake) as well as with recurrence-free survival. We also found that citrate, sarcosine, succinate, creatine, creatinine and pyruvate, and TGs have good predictive values for CCA recurrence. CONCLUSION: Our study demonstrates the possible molecular mechanisms underlying CCA recurrence, and these may associate with the existence of CSCs. The metabolic change involved in the recurrence pathway might be used to determine biomarkers for predicting CCA recurrence.

18.
Naunyn Schmiedebergs Arch Pharmacol ; 394(10): 2049-2059, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34283274

RESUMEN

Northeast Thailand has the highest incidence of cholangiocarcinoma (CCA) in the world. The lack of promising diagnostic markers and appropriate therapeutic drugs is the main problem for metastatic stage CCA patients who have a poor prognosis. N-cadherin, a cell adhesion molecule, is usually upregulated in cancers and has been proposed as an important mediator in epithelial-mesenchymal transition (EMT), one of the metastasis processes. Additionally, it has been shown that arctigenin, a seed isolated compound from Arctium lappa, can inhibit cancer cell progression via suppression of N-cadherin pathway. In this study, we investigated the protein expression of N-cadherin and its correlation with clinicopathological data of CCA patients, as well as the impact of arctigenin on KKU-213A and KKU-100 CCA cell lines and its underlying mechanisms. Immunohistochemistry results demonstrated that high expression of N-cadherin was significantly associated with severe CCA stage (p = 0.027), and shorter survival time (p = 0.002) of CCA patients. The mean overall survival times between low and high expression of N-cadherin were 31.6 and 14.8 months, respectively. Wound healing assays showed that arctigenin significantly inhibited CCA cell migration by downregulating N-cadherin whereas upregulating E-cadherin expression. Immunocytochemical staining revealed that arctigenin suppressed the expression of N-cadherin in both CCA cell lines. Furthermore, flow cytometry and western blot analysis revealed that arctigenin significantly reduced CCA cell viability and induced apoptosis via the Bax/Bcl-2/caspase-3 pathway. This research supports the use of N-cadherin as a prognostic marker for CCA and arctigenin as a potential alternative therapy for improving CCA treatment outcomes.


Asunto(s)
Antígenos CD/metabolismo , Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Biomarcadores de Tumor/metabolismo , Cadherinas/metabolismo , Colangiocarcinoma/tratamiento farmacológico , Furanos/uso terapéutico , Lignanos/uso terapéutico , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de los Conductos Biliares/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Colangiocarcinoma/metabolismo , Progresión de la Enfermedad , Femenino , Furanos/farmacología , Humanos , Lignanos/farmacología , Masculino , Persona de Mediana Edad , Pronóstico
19.
Cancer Metab ; 9(1): 11, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33726850

RESUMEN

BACKGROUND: Sulfasalazine (SSZ) is widely known as an xCT inhibitor suppressing CD44v9-expressed cancer stem-like cells (CSCs) being related to redox regulation. Cholangiocarcinoma (CCA) has a high recurrence rate and no effective chemotherapy. A recent report revealed high levels of CD44v9-positive cells in CCA patients. Therefore, a combination of drugs could prove a suitable strategy for CCA treatment via individual metabolic profiling. METHODS: We examined the effect of xCT-targeted CD44v9-CSCs using sulfasalazine combined with cisplatin (CIS) or gemcitabine in CCA in vitro and in vivo models and did NMR-based metabolomics analysis of xenograft mice tumor tissues. RESULTS: Our findings suggest that combined SSZ and CIS leads to a higher inhibition of cell proliferation and induction of cell death than CIS alone in both in vitro and in vivo models. Xenograft mice showed that the CD44v9-CSC marker and CK-19-CCA proliferative marker were reduced in the combination treatment. Interestingly, different metabolic signatures and significant metabolites were observed in the drug-treated group compared with the control group that revealed the cancer suppression mechanisms. CONCLUSIONS: SSZ could improve CCA therapy by sensitization to CIS through killing CD44v9-positive cells and modifying the metabolic pathways, in particular tryptophan degradation (i.e., kynurenine pathway, serotonin pathway) and nucleic acid metabolism.

20.
PLoS One ; 16(3): e0245871, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33780455

RESUMEN

CD44 is a transmembrane glycoprotein, the phosphorylation of which can directly trigger intracellular signaling, particularly Akt protein, for supporting cell growth, motility and invasion. This study examined the role of CD44 on the progression of Cholangiocarcinoma (CCA) using metabolic profiling to investigate the molecular mechanisms involved in the Akt signaling pathway. Our results show that the silencing of CD44 decreases Akt and mTOR phosphorylation resulting in p21 and Bax accumulation and Bcl-2 suppression that reduces cell proliferation. Moreover, an inhibition of cell migration and invasion regulated by CD44. Similarly, the silencing of CD44 showed an alteration in the epithelial-mesenchymal transition (EMT), e.g. an upregulation of E-cadherin and a downregulation of vimentin, and the reduction of the matrix metalloproteinase (MMP)-9 signal. Interestingly, a depletion of CD44 leads to metabolic pathway changes resulting in redox status modification and Trolox (anti-oxidant) led to the recovery of the cancer cell functions. Based on our findings, the regulation of CCA progression and metastasis via the redox status-related Akt signaling pathway depends on the alteration of metabolic profiling synchronized by CD44.


Asunto(s)
Neoplasias de los Conductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Receptores de Hialuranos/metabolismo , Redes y Vías Metabólicas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Neoplasias de los Conductos Biliares/patología , Línea Celular Tumoral , Colangiocarcinoma/patología , Progresión de la Enfermedad , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA