Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Ann Rheum Dis ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38986577

RESUMEN

OBJECTIVES: Bone remodelling is a highly dynamic process dependent on the precise coordination of osteoblasts and haematopoietic-cell derived osteoclasts. Changes in core metabolic pathways during osteoclastogenesis, however, are largely unexplored and it is unknown whether and how these processes are involved in bone homeostasis. METHODS: We metabolically and transcriptionally profiled cells during osteoclast and osteoblast generation. Individual gene expression was characterised by quantitative PCR and western blot. Osteoblast function was assessed by Alizarin red staining. immunoresponsive gene 1 (Irg1)-deficient mice were used in various inflammatory or non-inflammatory models of bone loss. Tissue gene expression was analysed by RNA in situ hybridisation. RESULTS: We show that during differentiation preosteoclasts rearrange their tricarboxylic acid cycle, a process crucially depending on both glucose and glutamine. This rearrangement is characterised by the induction of Irg1 and production of itaconate, which accumulates intracellularly and extracellularly. While the IRG1-itaconate axis is dispensable for osteoclast generation in vitro and in vivo, we demonstrate that itaconate stimulates osteoblasts by accelerating osteogenic differentiation in both human and murine cells. This enhanced osteogenic differentiation is accompanied by reduced proliferation and altered metabolism. Additionally, supplementation of itaconate increases bone formation by boosting osteoblast activity in mice. Conversely, Irg1-deficient mice exhibit decreased bone mass and have reduced osteoproliferative lesions in experimental arthritis. CONCLUSION: In summary, we identify itaconate, generated as a result of the metabolic rewiring during osteoclast differentiation, as a previously unrecognised regulator of osteoblasts.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38976556

RESUMEN

Introduction: The lens's metabolic demands are met through a continuous circulation of aqueous humor, encompassing a spectrum of components such as organic and inorganic ions, carbohydrates, glutathione, urea, amino acids, proteins, oxygen, carbon dioxide, and water. Metabolomics is a pivotal tool, offering an initial insight into the complexities of integrated metabolism. In this investigative study, we systematically scrutinize the composition of intraocular fluid in individuals afflicted with cataracts. Methods: The investigation involved a comprehensive analysis of aqueous humor samples from a cohort comprising 192 patients. These individuals were stratified by utilizing the SPONCS classification system, delineating distinct groups characterized by the hardness of cataracts. The analytical approach employed targeted quantitative metabolite analysis using HILIC-based liquid chromatography coupled with high-resolution mass spectrometric detection. The metabolomics data analysis was performed with MetaboAnalyst 5.0. Results: The results of the enrichment analysis have facilitated the inference that the discerned disparities among groups arise from disruptions in taurine and hypotaurine metabolism, variations in tryptophan metabolism, and modifications in mitochondrial beta-oxidation of short-chain saturated fatty acids and pyrimidine metabolism. Conclusion: A decline in taurine concentration precipitates diminished glutathione activity, prompting an elevated requirement for NAD+ and instigating tryptophan metabolism along the kynurenine pathway. Activation of this pathway is additionally prompted by interferon-gamma and UV radiation, leading to the induction of IDO. Concurrently, heightened mitochondrial beta-oxidation signifies a distinctive scenario in translocating fatty acids into the mitochondria, enhancing energy production.

3.
Gut Microbes ; 16(1): 2361491, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38868903

RESUMEN

Metformin is widely used for treating type 2 diabetes mellitus (T2D). However, the efficacy of metformin monotherapy is highly variable within the human population. Understanding the potential indirect or synergistic effects of metformin on gut microbiota composition and encoded functions could potentially offer new insights into predicting treatment efficacy and designing more personalized treatments in the future. We combined targeted metabolomics and metagenomic profiling of gut microbiomes in newly diagnosed T2D patients before and after metformin therapy to identify potential pre-treatment biomarkers and functional signatures for metformin efficacy and induced changes in metformin therapy responders. Our sequencing data were largely corroborated by our metabolic profiling and identified that pre-treatment enrichment of gut microbial functions encoding purine degradation and glutamate biosynthesis was associated with good therapy response. Furthermore, we identified changes in glutamine-associated amino acid (arginine, ornithine, putrescine) metabolism that characterize differences in metformin efficacy before and after the therapy. Moreover, metformin Responders' microbiota displayed a shifted balance between bacterial lipidA synthesis and degradation as well as alterations in glutamate-dependent metabolism of N-acetyl-galactosamine and its derivatives (e.g. CMP-pseudaminate) which suggest potential modulation of bacterial cell walls and human gut barrier, thus mediating changes in microbiome composition. Together, our data suggest that glutamine and associated amino acid metabolism as well as purine degradation products may potentially condition metformin activity via its multiple effects on microbiome functional composition and therefore serve as important biomarkers for predicting metformin efficacy.


Asunto(s)
Aminoácidos , Bacterias , Biomarcadores , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hipoglucemiantes , Metformina , Purinas , Humanos , Metformina/farmacología , Metformina/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Tipo 2/metabolismo , Aminoácidos/metabolismo , Masculino , Persona de Mediana Edad , Femenino , Purinas/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Biomarcadores/metabolismo , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Anciano , Adulto , Resultado del Tratamiento , Metabolómica
4.
Front Immunol ; 15: 1324671, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726011

RESUMEN

Introduction: Hereditary angioedema (HAE) is a rare, life-threatening autosomal dominant genetic disorder caused by a deficient and/or dysfunctional C1 esterase inhibitor (C1-INH) (type 1 and type 2) leading to recurrent episodes of edema. This study aims to explore HAE patients' metabolomic profiles and identify novel potential diagnostic biomarkers for HAE. The study also examined distinguishing HAE from idiopathic angioedema (AE). Methods: Blood plasma samples from 10 HAE (types 1/2) patients, 15 patients with idiopathic AE, and 20 healthy controls were collected in Latvia and analyzed using LC-MS based targeted metabolomics workflow. T-test and fold change calculation were used to identify metabolites with significant differences between diseases and control groups. ROC analysis was performed to evaluate metabolite based classification model. Results: A total of 33 metabolites were detected and quantified. The results showed that isovalerylcarnitine, cystine, and hydroxyproline were the most significantly altered metabolites between the disease and control groups. Aspartic acid was identified as a significant metabolite that could differentiate between HAE and idiopathic AE. The mathematical combination of metabolites (hydroxyproline * cystine)/(creatinine * isovalerylcarnitine) was identified as the diagnosis signature for HAE. Furthermore, glycine/asparagine ratio could differentiate between HAE and idiopathic AE. Conclusion: Our study identified isovalerylcarnitine, cystine, and hydroxyproline as potential biomarkers for HAE diagnosis. Identifying new biomarkers may offer enhanced prospects for accurate, timely, and economical diagnosis of HAE, as well as tailored treatment selection for optimal patient care.


Asunto(s)
Angioedemas Hereditarios , Biomarcadores , Metabolómica , Humanos , Femenino , Masculino , Angioedemas Hereditarios/diagnóstico , Angioedemas Hereditarios/sangre , Adulto , Biomarcadores/sangre , Metabolómica/métodos , Persona de Mediana Edad , Metaboloma , Adulto Joven , Estudios de Casos y Controles , Proteína Inhibidora del Complemento C1/genética , Proteína Inhibidora del Complemento C1/metabolismo , Adolescente
5.
Chem Res Toxicol ; 37(2): 208-211, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38191130

RESUMEN

The Cell Counting Kit-8 (CCK-8) cell viability assay, also known as WST-8, is widely recognized for its nontoxic nature, making it suitable for further studies on treated cells. This practice is commonly observed in the field of tissue engineering. While live/dead imaging may not readily reveal macroscopic differences, our investigation has uncovered significant intracellular metabolic changes. Notably, we observed substantial down-regulation of metabolites within the glycolysis and pentose phosphate pathways. These metabolic alterations predominantly affect energy metabolism and may potentially impact the cellular redox environment. In light of these findings, we strongly recommend that researchers exercise caution when using cells treated with CCK-8 in subsequent experiments.


Asunto(s)
Glucólisis , Vía de Pentosa Fosfato , Vía de Pentosa Fosfato/fisiología , Supervivencia Celular , Glucólisis/fisiología , Metabolismo Energético , Metaboloma
6.
Cell Metab ; 35(11): 1931-1943.e8, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37804836

RESUMEN

The intestinal epithelium has a high turnover rate and constantly renews itself through proliferation of intestinal crypt cells, which depends on insufficiently characterized signals from the microenvironment. Here, we showed that colonic macrophages were located directly adjacent to epithelial crypt cells in mice, where they metabolically supported epithelial cell proliferation in an mTORC1-dependent manner. Specifically, deletion of tuberous sclerosis complex 2 (Tsc2) in macrophages activated mTORC1 signaling that protected against colitis-induced intestinal damage and induced the synthesis of the polyamines spermidine and spermine. Epithelial cells ingested these polyamines and rewired their cellular metabolism to optimize proliferation and defense. Notably, spermine directly stimulated proliferation of colon epithelial cells and colon organoids. Genetic interference with polyamine production in macrophages altered global polyamine levels in the colon and modified epithelial cell proliferation. Our results suggest that macrophages act as "commensals" that provide metabolic support to promote efficient self-renewal of the colon epithelium.


Asunto(s)
Poliaminas , Espermina , Ratones , Animales , Espermina/metabolismo , Poliaminas/metabolismo , Colon , Mucosa Intestinal/metabolismo , Homeostasis , Macrófagos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
7.
Anal Biochem ; 676: 115246, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37451419

RESUMEN

Incubation of reduced nicotinamide adenine dinucleotide (NADH) but not oxidized NAD+ with ortho-aminobenzaldehyde (oABA) generated an uncharacterized chromophore with an absorption peak characteristic of a dihydroquinazoline condensate. This chromophore is responsible for a non-specific signal in a diamine oxidase (DAO) activity assay based on the generation of fluorescent dihydroquinazoline structures directly from DAO substrates. Herein we show that at pH values below 3.0 the glycosidic bond of NADH/NADPH is broken releasing double protonated dihydro-nicotinamide (dihydro-NAM), which consequently condensates with oABA to a novel dihydroquinazoline chromophore and fluorophore, namely the 6- or 8-carbamoyl-5H,7H,8H,9H-10λ5-pyrido[2,1-b]quinazolin-10-ylium isomer (CMPQ). The second protonation event closely correlates with the pKa of the N1 nitrogen of C5-protonated dihydro-NAM and fluorophore stability. The fusion partner of oABA is likely the iminium of the primary acid product of dihydro-NAM after glycosidic bond hydrolysis and before irreversible cyclization. Trapping of protonated dihydro-NAM from NADH or NADPH with oABA allows quantification of these dinucleotides. Despite almost a century of research studying acid-catalyzed molecular rearrangements of NADH and NADPH, new and surprising details can be discovered.


Asunto(s)
NAD , Niacinamida , NAD/metabolismo , NADP/metabolismo , Colorantes , NADH NADPH Oxidorreductasas , Oxidación-Reducción
8.
Urolithiasis ; 51(1): 49, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36920530

RESUMEN

In primary hyperoxaluria type 1 excessive endogenous production of oxalate and glycolate leads to increased urinary excretion of these metabolites. Although genetic testing is the most definitive and preferred diagnostic method, quantification of these metabolites is important for the diagnosis and evaluation of potential therapeutic interventions. Current metabolite quantification methods use laborious, technically highly complex and expensive liquid, gas or ion chromatography tandem mass spectrometry, which are available only in selected laboratories worldwide. Incubation of ortho-aminobenzaldehyde (oABA) with glyoxylate generated from glycolate using recombinant mouse glycolate oxidase (GO) and glycine leads to the formation of a stable dihydroquinazoline double aromatic ring chromophore with specific peak absorption at 440 nm. The urinary limit of detection and estimated limit of quantification derived from eight standard curves were 14.3 and 28.7 µmol glycolate per mmol creatinine, respectively. High concentrations of oxalate, lactate and L-glycerate do not interfere in this assay format. The correlation coefficient between the absorption and an ion chromatography tandem mass spectrometry method is 93% with a p value < 0.00001. The Bland-Altmann plot indicates acceptable agreement between the two methods. The glycolate quantification method using conversion of glycolate via recombinant mouse GO and fusion of oABA and glycine with glyoxylate is fast, simple, robust and inexpensive. Furthermore this method might be readily implemented into routine clinical diagnostic laboratories for glycolate measurements in primary hyperoxaluria type 1.


Asunto(s)
Hiperoxaluria Primaria , Hiperoxaluria , Ratones , Animales , Hiperoxaluria Primaria/terapia , Oxalatos/orina , Glicolatos/orina , Glioxilatos/metabolismo , Glicina , Hiperoxaluria/diagnóstico , Hiperoxaluria/orina
9.
Life Sci Alliance ; 5(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36114003

RESUMEN

Solute carrier (SLC) transporters control fluxes of nutrients and metabolites across membranes and thereby represent a critical interface between the microenvironment and cellular and subcellular metabolism. Because of substantial functional overlap, the interplay and relative contributions of SLCs in response to environmental stresses remain poorly elucidated. To infer functional relationships between SLCs and metabolites, we developed a strategy to identify SLCs able to sustain cell viability and proliferation under growth-limiting concentrations of essential nutrients. One-by-one depletion of 13 amino acids required for cell proliferation enabled gain-of-function genetic screens using a SLC-focused CRISPR/Cas9-based transcriptional activation approach to uncover transporters relieving cells from growth-limiting metabolic bottlenecks. Among the transporters identified, we characterized the cationic amino acid transporter SLC7A3 as a gene that, when up-regulated, overcame low availability of arginine and lysine by increasing their uptake, whereas SLC7A5 was able to sustain cellular fitness upon deprivation of several neutral amino acids. Moreover, we identified metabolic compensation mediated by the glutamate/aspartate transporters SLC1A2 and SLC1A3 under glutamine-limiting conditions. Overall, this gain-of-function approach using human cells uncovered functional transporter-nutrient relationships and revealed that transport activity up-regulation may be sufficient to overcome environmental metabolic restrictions.


Asunto(s)
Proteínas de Transporte de Membrana , Nutrientes , Sistemas de Transporte de Aminoácidos Básicos/genética , Aminoácidos/metabolismo , Arginina/metabolismo , Ácido Aspártico/metabolismo , Mutación con Ganancia de Función , Glutamatos/metabolismo , Glutamina/metabolismo , Humanos , Transportador de Aminoácidos Neutros Grandes 1 , Lisina/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Nutrientes/metabolismo
10.
Mucosal Immunol ; 15(5): 896-907, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35856089

RESUMEN

Environmental microbial triggers shape the development and functionality of the immune system. Alveolar macrophages (AMs), tissue-resident macrophages of the lungs, are in constant and direct contact with inhaled particles and microbes. Such exposures likely impact AM reactivity to subsequent challenges by immunological imprinting mechanisms referred to as trained immunity. Here, we investigated whether a ubiquitous microbial compound has the potential to induce AM training in vivo. We discovered that intranasal exposure to ambient amounts of lipopolysaccharide (LPS) induced a pronounced AM memory response, characterized by enhanced reactivity upon pneumococcal challenge. Exploring the mechanistic basis of AM training, we identified a critical role of type 1 interferon signaling and found that inhibition of fatty acid oxidation and glutaminolysis significantly attenuated the training effect. Notably, adoptive transfer of trained AMs resulted in increased bacterial loads and tissue damage upon subsequent pneumococcal infection. In contrast, intranasal pre-exposure to LPS promoted bacterial clearance, highlighting the complexity of stimulus-induced immune responses, which likely involve multiple cell types and may depend on the local immunological and metabolic environment. Collectively, our findings demonstrate the profound impact of ambient microbial exposure on pulmonary immune memory and reveal tissue-specific features of trained immunity.


Asunto(s)
Interferón Tipo I , Macrófagos Alveolares , Interferón Tipo I/metabolismo , Lipopolisacáridos , Pulmón , Transducción de Señal
11.
Polymers (Basel) ; 14(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35631979

RESUMEN

The musculoskeletal (MS) system consists of bone, cartilage, tendon, ligament, and skeletal muscle, which forms the basic framework of the human body. This system plays a vital role in appropriate body functions, including movement, the protection of internal organs, support, hematopoiesis, and postural stability. Therefore, it is understandable that the damage or loss of MS tissues significantly reduces the quality of life and limits mobility. Tissue engineering and its applications in the healthcare industry have been rapidly growing over the past few decades. Tissue engineering has made significant contributions toward developing new therapeutic strategies for the treatment of MS defects and relevant disease. Among various biomaterials used for tissue engineering, natural polymers offer superior properties that promote optimal cell interaction and desired biological function. Natural polymers have similarity with the native ECM, including enzymatic degradation, bio-resorb and non-toxic degradation products, ability to conjugate with various agents, and high chemical versatility, biocompatibility, and bioactivity that promote optimal cell interaction and desired biological functions. This review summarizes recent advances in applying natural-based scaffolds for musculoskeletal tissue engineering.

12.
Metabolites ; 12(3)2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35323707

RESUMEN

Perturbations of metabolite profiles in human and canine enteropathies have been reported before. However, data in dogs are scarce and inconsistent. Currently, the metabolite profile in Yorkshire Terrier enteropathy (YTE) and the impact of treatment is unknown. The objective of this study was to investigate the plasma metabolome of 13 Yorkshire Terriers with YTE and compare it to 20 healthy Yorkshire Terriers. Furthermore, we studied the impact of treatment on the metabolome. In this prospective observational study, plasma metabolite profiles were analyzed by flow injection analysis-tandem mass spectrometry (FIA-MS/MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) using a targeted metabolomics kit. Metabolite analysis revealed that YTE is accompanied by changes in lipid and bile acid metabolism. YTE was associated with a significant decrease of long-chain fatty acids (octadecenoic acid, eicosadienoic acid, eicosatrienoic acid) and lower levels of long-chain acylcarnitines (tetradecanoylcarnitine, hexadecanoylcarnitine, hexadecenoylcarnitine, octadecenoylcarnitine) compared with healthy controls. Furthermore, taurodeoxycholic acid, a secondary bile acid, was decreased in plasma from YTE patients. These changes might be breed-specific and might be involved in the pathogenesis of YTE. Interestingly, changes in metabolite levels were not recovered after treatment and differed considerably from healthy controls.

13.
Eur Respir J ; 59(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34244315

RESUMEN

RATIONALE: Lung transplantation is the ultimate treatment option for patients with end-stage respiratory diseases but bears the highest mortality rate among all solid organ transplantations due to chronic lung allograft dysfunction (CLAD). The mechanisms leading to CLAD remain elusive due to an insufficient understanding of the complex post-transplant adaptation processes. OBJECTIVES: To better understand these lung adaptation processes after transplantation and to investigate their association with future changes in allograft function. METHODS: We performed an exploratory cohort study of bronchoalveolar lavage samples from 78 lung recipients and donors. We analysed the alveolar microbiome using 16S rRNA sequencing, the cellular composition using flow cytometry, as well as metabolome and lipidome profiling. MEASUREMENTS AND MAIN RESULTS: We established distinct temporal dynamics for each of the analysed data sets. Comparing matched donor and recipient samples, we revealed that recipient-specific as well as environmental factors, rather than the donor microbiome, shape the long-term lung microbiome. We further discovered that the abundance of certain bacterial strains correlated with underlying lung diseases even after transplantation. A decline in forced expiratory volume during the first second (FEV1) is a major characteristic of lung allograft dysfunction in transplant recipients. By using a machine learning approach, we could accurately predict future changes in FEV1 from our multi-omics data, whereby microbial profiles showed a particularly high predictive power. CONCLUSION: Bronchoalveolar microbiome, cellular composition, metabolome and lipidome show specific temporal dynamics after lung transplantation. The lung microbiome can predict future changes in lung function with high precision.


Asunto(s)
Trasplante de Pulmón , Microbiota , Aloinjertos , Estudios de Cohortes , Humanos , Pulmón , ARN Ribosómico 16S/genética , Estudios Retrospectivos
14.
Microbiol Spectr ; 9(3): e0033821, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34878333

RESUMEN

The heterogeneity in severity and outcome of COVID-19 cases points out the urgent need for early molecular characterization of patients followed by risk-stratified care. The main objective of this study was to evaluate the fluctuations of serum metabolomic profiles of COVID-19 patients with severe illness during the different disease stages in a longitudinal manner. We demonstrate a distinct metabolomic signature in serum samples of 32 hospitalized patients at the acute phase compared to the recovery period, suggesting the tryptophan (tryptophan, kynurenine, and 3-hydroxy-DL-kynurenine) and arginine (citrulline and ornithine) metabolism as contributing pathways in the immune response to SARS-CoV-2 with a potential link to the clinical severity of the disease. In addition, we suggest that glutamine deprivation may further result in inhibited M2 macrophage polarization as a complementary process, and highlight the contribution of phenylalanine and tyrosine in the molecular mechanisms underlying the severe course of the infection. In conclusion, our results provide several functional metabolic markers for disease progression and severe outcome with potential clinical application. IMPORTANCE Although the host defense mechanisms against SARS-CoV-2 infection are still poorly described, they are of central importance in shaping the course of the disease and the possible outcome. Metabolomic profiling may complement the lacking knowledge of the molecular mechanisms underlying clinical manifestations and pathogenesis of COVID-19. Moreover, early identification of metabolomics-based biomarker signatures is proved to serve as an effective approach for the prediction of disease outcome. Here we provide the list of metabolites describing the severe, acute phase of the infection and bring the evidence of crucial metabolic pathways linked to aggressive immune responses. Finally, we suggest metabolomic phenotyping as a promising method for developing personalized care strategies in COVID-19 patients.


Asunto(s)
Aminoácidos/metabolismo , COVID-19/metabolismo , Hospitales , Metaboloma , Índice de Severidad de la Enfermedad , Aminoácidos/sangre , Biomarcadores/sangre , Interacciones Microbiota-Huesped , Humanos , Quinurenina/análogos & derivados , Metabolómica , SARS-CoV-2
15.
Blood Adv ; 5(20): 4125-4139, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34478517

RESUMEN

Antiapoptotic Bcl-2 family members have recently (re)emerged as key drug targets in cancer, with a tissue- and tumor-specific activity profile of available BH3 mimetics. In multiple myeloma, MCL-1 has been described as a major gatekeeper of apoptosis. This discovery has led to the rapid establishment of clinical trials evaluating the impact of various MCL-1 inhibitors. However, our understanding about the clinical impact and optimal use of MCL-1 inhibitors is still limited. We therefore explored mechanisms of acquired MCL-1 inhibitor resistance and optimization strategies in myeloma. Our findings indicated heterogeneous paths to resistance involving baseline Bcl-2 family alterations of proapoptotic (BAK, BAX, and BIM) and antiapoptotic (Bcl-2 and MCL-1) proteins. These manifestations depend on the BH3 profile of parental cells that guide the enhanced formation of Bcl-2:BIM and/or the dynamic (ie, treatment-induced) formation of Bcl-xL:BIM and Bcl-xL:BAK complexes. Accordingly, an unbiased high-throughput drug-screening approach (n = 528) indicated alternative BH3 mimetics as top combination partners for MCL-1 inhibitors in sensitive and resistant cells (Bcl-xL>Bcl-2 inhibition), whereas established drug classes were mainly antagonistic (eg, antimitotic agents). We also revealed reduced activity of MCL-1 inhibitors in the presence of stromal support as a drug-class effect that was overcome by concurrent Bcl-xL or Bcl-2 inhibition. Finally, we demonstrated heterogeneous Bcl-2 family deregulation and MCL-1 inhibitor cross-resistance in carfilzomib-resistant cells, a phenomenon linked to the MDR1-driven drug efflux of MCL-1 inhibitors. The implications of our findings for clinical practice emphasize the need for patient-adapted treatment protocols, with the tracking of tumor- and/or clone-specific adaptations in response to MCL-1 inhibition.


Asunto(s)
Mieloma Múltiple , Preparaciones Farmacéuticas , Línea Celular Tumoral , Humanos , Mieloma Múltiple/tratamiento farmacológico , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína bcl-X
16.
Metabolites ; 11(7)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34357328

RESUMEN

Identifying the changes in endogenous metabolites in response to intrinsic and extrinsic factors has excellent potential to obtain an understanding of cells, biofluids, tissues, or organisms' functions and interactions with the environment. The advantages provided by the metabolomics strategy have promoted studies in bone research fields, including an understanding of bone cell behaviors, diagnosis and prognosis of diseases, and the development of treatment methods such as implanted biomaterials. This review article summarizes the metabolism changes during osteogenesis, osteoclastogenesis, and immunoregulation in hard tissue. The second section of this review is dedicated to describing and discussing metabolite changes in the most relevant bone diseases: osteoporosis, bone injuries, rheumatoid arthritis, and osteosarcoma. We consolidated the most recent finding of the metabolites and metabolite pathways affected by various bone disorders. This collection can serve as a basis for future metabolomics-driven bone research studies to select the most relevant metabolites and metabolic pathways. Additionally, we summarize recent metabolic studies on metabolomics for the development of bone disease treatment including biomaterials for bone engineering. With this article, we aim to provide a comprehensive summary of metabolomics in bone research, which can be helpful for interdisciplinary researchers, including material engineers, biologists, and clinicians.

17.
Gastroenterology ; 161(4): 1245-1256.e20, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34146566

RESUMEN

BACKGROUND & AIMS: Irritable bowel syndrome (IBS) and inflammatory bowel diseases result in a substantial reduction in quality of life and a considerable socioeconomic impact. In IBS, diagnosis and treatment options are limited, but evidence for involvement of the gut microbiome in disease pathophysiology is emerging. Here we analyzed the prevalence of endoscopically visible mucosal biofilms in gastrointestinal disease and associated changes in microbiome composition and metabolism. METHODS: The presence of mucosal biofilms was assessed in 1426 patients at 2 European university-based endoscopy centers. One-hundred and seventeen patients were selected for in-depth molecular and microscopic analysis using 16S ribosomal RNA gene amplicon-sequencing of colonic biopsies and fecal samples, confocal microscopy with deep learning-based image analysis, scanning electron microscopy, metabolomics, and in vitro biofilm formation assays. RESULTS: Biofilms were present in 57% of patients with IBS and 34% of patients with ulcerative colitis compared with 6% of controls (P < .001). These yellow-green adherent layers of the ileum and right-sided colon were microscopically confirmed to be dense bacterial biofilms. 16S-sequencing links the presence of biofilms to a dysbiotic gut microbiome, including overgrowth of Escherichia coli and Ruminococcus gnavus. R. gnavus isolates cultivated from patient biofilms also formed biofilms in vitro. Metabolomic analysis found an accumulation of bile acids within biofilms that correlated with fecal bile acid excretion, linking this phenotype with a mechanism of diarrhea. CONCLUSIONS: The presence of mucosal biofilms is an endoscopic feature in a subgroup of IBS and ulcerative colitis with disrupted bile acid metabolism and bacterial dysbiosis. They provide novel insight into the pathophysiology of IBS and ulcerative colitis, illustrating that biofilm can be seen as a tipping point in the development of dysbiosis and disease.


Asunto(s)
Bacterias/crecimiento & desarrollo , Biopelículas/crecimiento & desarrollo , Colitis Ulcerosa/microbiología , Colon/microbiología , Colonoscopía , Microbioma Gastrointestinal , Mucosa Intestinal/microbiología , Síndrome del Colon Irritable/microbiología , Austria , Bacterias/metabolismo , Bacterias/ultraestructura , Estudios de Casos y Controles , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Colon/metabolismo , Colon/patología , Aprendizaje Profundo , Alemania , Humanos , Interpretación de Imagen Asistida por Computador , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/patología , Metabolómica , Microscopía Confocal , Microscopía Electrónica de Rastreo , Valor Predictivo de las Pruebas , Ribotipificación
18.
Nat Metab ; 3(5): 651-664, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33972798

RESUMEN

Metabolism negotiates cell-endogenous requirements of energy, nutrients and building blocks with the immediate environment to enable various processes, including growth and differentiation. While there is an increasing number of examples of crosstalk between metabolism and chromatin, few involve uptake of exogenous metabolites. Solute carriers (SLCs) represent the largest group of transporters in the human genome and are responsible for the transport of a wide variety of substrates, including nutrients and metabolites. We aimed to investigate the possible involvement of SLC-mediated solutes uptake and cellular metabolism in regulating cellular epigenetic states. Here, we perform a CRISPR-Cas9 transporter-focused genetic screen and a metabolic compound library screen for the regulation of BRD4-dependent chromatin states in human myeloid leukaemia cells. Intersection of the two orthogonal approaches reveal that loss of transporters involved with purine transport or inhibition of de novo purine synthesis lead to dysfunction of BRD4-dependent transcriptional regulation. Through mechanistic characterization of the metabolic circuitry, we elucidate the convergence of SLC-mediated purine uptake and de novo purine synthesis on BRD4-chromatin occupancy. Moreover, adenine-related metabolite supplementation effectively restores BRD4 functionality on purine impairment. Our study highlights the specific role of purine/adenine metabolism in modulating BRD4-dependent epigenetic states.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Transporte de Nucleósidos/metabolismo , Purinas/metabolismo , Proteínas Transportadoras de Solutos/metabolismo , Factores de Transcripción/metabolismo , Adenina/metabolismo , Vías Biosintéticas , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular , Cromatina/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de Transporte de Membrana , Modelos Biológicos , Proteínas Transportadoras de Solutos/genética , Factores de Transcripción/antagonistas & inhibidores , Transcripción Genética
19.
J Allergy Clin Immunol ; 148(6): 1533-1544, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33864889

RESUMEN

BACKGROUND: The number of mast cells in various organs is elevated manifold in individuals with systemic mastocytosis. Degranulation can lead to life-threatening symptomatology. No data about the alterations of the metabolome and lipidome during an attack have been published. OBJECTIVE: Our aim was to analyze changes in metabolomics and lipidomics during the acute phase of a severe mast cell activation event. METHODS: A total of 43 metabolites and 11 lipid classes comprising 200 subvariants from multiple plasma samples in duplicate, covering 72 hours of a severe mast cell activation attack with nausea and vomiting, were compared with 2 baseline samples by using quantitative liquid chromatography-mass spectrometry. RESULTS: A strong enterocyte dysfunction reflected in an almost 20-fold reduction in the functional small bowel length was extrapolated from strongly reduced ornithine and citrulline concentrations and was very likely secondary to severe endothelial cell dysfunction with hypoperfusion and extensive vascular leakage. Highly increased histamine and lactate concentrations accompanied the peak in clinical symptoms. Elevated asymmetric and symmetric dimethylarginine levels combined with reduced arginine levels compromised endothelial nitric oxide synthase activity and nitric oxide signaling. Specific and extensive depletion of many lysophosphatidylcholine variants indicates localized autotaxin activation and lysophosphatidic acid release. A strong correlation of clinical parameters with histamine concentrations and symptom reduction after 100-fold elevated plasma diamine oxidase concentrations implies that histamine is the key driver of the acute phase. CONCLUSIONS: Rapid elimination of elevated histamine concentrations through use of recombinant human diamine oxidase, supplementation of lysophosphatidylcholine for immunomodulation, inhibition of autotaxin activity, and/or blockade of lysophosphatidic acid receptors might represent new treatment options for life-threatening mast cell activation events.


Asunto(s)
Amina Oxidasa (conteniendo Cobre)/metabolismo , Mastocitos/inmunología , Mastocitosis Sistémica/metabolismo , Adulto , Degranulación de la Célula , Histamina/metabolismo , Humanos , Inmunomodulación , Lipidómica , Lisofosfatidilcolinas/metabolismo , Masculino , Metaboloma , Náusea , Óxido Nítrico Sintasa de Tipo III/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Transducción de Señal , Vómitos
20.
J Gerontol A Biol Sci Med Sci ; 76(3): 400-405, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32750116

RESUMEN

The companion dog has recently been promoted as powerful translational model of aging. However, while dogs share environments with their human owners and develop many of the same age-related morbidities, little is known about the underlying mechanisms that drive their health and longevity. In addition, dogs have a well described phenotypic pattern in which small dogs live significantly longer than large dogs, such that weight can be used as a crude proxy for longevity. To investigate this pattern, we completed a small lipidomics study on 41 dogs in the Birmingham, Alabama, United States, area to determine individual circulating lipids that were associated with age and body weight. We discovered that sphingomyelins were significantly higher in large, short-lived dogs, independent of age, and triglycerides were higher in older dogs of all sizes. Our results point towards physiological differences that may explain a portion of the variation in longevity seen in companion dogs.


Asunto(s)
Peso Corporal , Metabolismo de los Lípidos/fisiología , Longevidad/fisiología , Mascotas/sangre , Animales , Perros , Lipidómica , Análisis de Componente Principal , Esfingomielinas/sangre , Triglicéridos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA