Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto principal
Intervalo de año de publicación
1.
Reg Environ Change ; 23(3): 97, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37489177

RESUMEN

Diverse agricultural land uses are a typical feature of multifunctional landscapes. The uncertain change in the drivers of global land use, such as climate, market and policy technology and demography, challenges the long-term management of agricultural diversification. As these global drivers also affect smaller scales, it is important to capture the traits of regionally specific farm activities to facilitate adaptation to change. By downscaling European shared socioeconomic pathways (SSPs) for agricultural and food systems, combined with representative concentration pathways (RCP) to regionally specific, alternative socioeconomic and climate scenarios, the present study explores the major impacts of the drivers of global land use on regional agriculture by simulating farm-level decisions and identifies the socio-ecological implications for promoting diverse agricultural landscapes in 2050. A hilly orchard region in northern Switzerland was chosen as a case study to represent the multifunctional nature of Swiss agriculture. Results show that the different regionalised pathways lead to contrasting impacts on orchard meadows, production levels and biodiversity. Increased financial support for ecological measures, adequate farm labour supplies for more labour-intensive farming and consumer preferences that favour local farm produce can offset the negative impacts of climate change and commodity prices and contribute to agricultural diversification and farmland biodiversity. However, these conditions also caused a significant decline in farm production levels. This study suggests that considering a broader set of land use drivers beyond direct payments, while acknowledging potential trade-offs and diverse impacts across different farm types, is required to effectively manage and sustain diversified agricultural landscapes in the long run. Supplementary information: The online version contains supplementary material available at 10.1007/s10113-023-02092-5.

2.
Environ Sci Technol ; 57(25): 9184-9193, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37310090

RESUMEN

Life cycle assessment (LCA) aims at providing standardized evaluations of processes involving resource use, human health, and environmental consequences. Currently, spatial dependencies are most often neglected, though they are essential for impact categories like biodiversity. The "Swiss Agricultural Life Cycle Assessment for Biodiversity (SALCA-BD)" evaluates the impact of agricultural field management on 11 indicator species groups. We tested if its performance can be improved by accounting for the spatial context of the individual fields. We used high-resolution bird/butterfly point observations in two agricultural regions in Switzerland and built linear mixed models to compare SALCA-BD scores to the observed species richness at the field/landscape scale. We calculated a set of landscape metrics, tested their relationship with the landscape-model prediction errors, and then added all significant metrics as additional predictors to the landscape models. Our results show that field-scale SALCA-BD scores were significantly related to the observed field-scale richness for both indicator groups. However, the performance decreased when aggregated to the landscape scale, with high variability between regions. Adding specific landscape metrics improved the landscape model for birds but not for butterflies. Integrating the spatial context to LCA biodiversity assessments could provide moderate benefits, while its usefulness depends on the conditions of the respective assessment.


Asunto(s)
Mariposas Diurnas , Animales , Humanos , Granjas , Biodiversidad , Agricultura/métodos , Aves , Estadios del Ciclo de Vida , Ecosistema
3.
Ecol Evol ; 10(23): 13518-13529, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33304556

RESUMEN

A growing food demand and advanced agricultural techniques increasingly affect farmland ecosystems, threatening invertebrate populations with cascading effects along the food chain upon insectivorous vertebrates. Supporting farmland biodiversity thus optimally requires the delineation of species hotspots at multiple trophic levels to prioritize conservation management. The goal of this study was to investigate the links between grassland management intensity and orthopteran density at the field scale and to upscale this information to the landscape in order to guide management action at landscape scale. More specifically, we investigated the relationships between grassland management intensity, floral indicator species, and orthopteran abundance in grasslands with different land use in the SW Swiss Alps. Field vegetation surveys of indicator plant species were used to generate a management intensity proxy, to which field assessments of orthopterans were related. Orthopteran abundance showed a hump-shaped response to management intensity, with low values in intensified, nutrient-rich grasslands and in nutrient-poor, xeric grasslands, while it peaked in middle-intensity grasslands. Combined with remote-sensed data about grassland gross primary productivity, the above proxy was used to build landscape-wide, spatially explicit projections of the potential distribution of orthopteran-rich grasslands as possible foraging grounds for insectivorous vertebrates. This spatially explicit multitrophic approach enables the delineation of focal farmland areas in order to prioritize conservation action.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA