Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Biotechnol Bioeng ; 121(2): 580-592, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37983971

RESUMEN

One-pot cascade reactions of coupled disaccharide phosphorylases enable an efficient transglycosylation via intermediary α-d-glucose 1-phosphate (G1P). Such transformations have promising applications in the production of carbohydrate commodities, including the disaccharide cellobiose for food and feed use. Several studies have shown sucrose and cellobiose phosphorylase for cellobiose synthesis from sucrose, but the boundaries on transformation efficiency that result from kinetic and thermodynamic characteristics of the individual enzyme reactions are not known. Here, we assessed in a step-by-step systematic fashion the practical requirements of a kinetic model to describe cellobiose production at industrially relevant substrate concentrations of up to 600 mM sucrose and glucose each. Mechanistic initial-rate models of the two-substrate reactions of sucrose phosphorylase (sucrose + phosphate → G1P + fructose) and cellobiose phosphorylase (G1P + glucose → cellobiose + phosphate) were needed and additionally required expansion by terms of glucose inhibition, in particular a distinctive two-site glucose substrate inhibition of the cellobiose phosphorylase (from Cellulumonas uda). Combined with mass action terms accounting for the approach to equilibrium, the kinetic model gave an excellent fit and a robust prediction of the full reaction time courses for a wide range of enzyme activities as well as substrate concentrations, including the variable substoichiometric concentration of phosphate. The model thus provides the essential engineering tool to disentangle the highly interrelated factors of conversion efficiency in the coupled enzyme reaction; and it establishes the necessary basis of window of operation calculations for targeted optimizations toward different process tasks.


Asunto(s)
Celobiosa , Glucosiltransferasas , Glucosiltransferasas/metabolismo , Fosforilasas/metabolismo , Glucosa , Disacáridos , Sacarosa , Cinética , Fosfatos , Especificidad por Sustrato
2.
Biotechnol Bioeng ; 121(2): 566-579, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37986649

RESUMEN

The inherent complexity of coupled biocatalytic reactions presents a major challenge for process development with one-pot multienzyme cascade transformations. Kinetic models are powerful engineering tools to guide the optimization of cascade reactions towards a performance suitable for scale up to an actual production. Here, we report kinetic model-based window of operation analysis for cellobiose production (≥100 g/L) from sucrose and glucose by indirect transglycosylation via glucose 1-phosphate as intermediate. The two-step cascade transformation is catalyzed by sucrose and cellobiose phosphorylase in the presence of substoichiometric amounts of phosphate (≤27 mol% of substrate). Kinetic modeling was instrumental to uncover the hidden effect of bulk microviscosity due to high sugar concentrations on decreasing the rate of cellobiose phosphorylase specifically. The mechanistic-empirical hybrid model thus developed gives a comprehensive description of the cascade reaction at industrially relevant substrate conditions. Model simulations serve to unravel opposed relationships between efficient utilization of the enzymes and maximized concentration (or yield) of the product within a given process time, in dependence of the initial concentrations of substrate and phosphate used. Optimum balance of these competing key metrics of process performance is suggested from the model-calculated window of operation and is verified experimentally. The evidence shown highlights the important use of kinetic modeling for the characterization and optimization of cascade reactions in ways that appear to be inaccessible to purely data-driven approaches.


Asunto(s)
Celobiosa , Fosforilasas , Celobiosa/química , Glucosiltransferasas/química , Glucosa , Sacarosa , Fosfatos
3.
Biotechnol Bioeng ; 118(10): 4028-4040, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34232503

RESUMEN

Mechanism-based kinetic models are rigorous tools to analyze enzymatic reactions, but their extension to actual conditions of the biocatalytic synthesis can be difficult. Here, we demonstrate (mechanistic-empirical) hybrid modeling for systematic optimization of the sucrose phosphorylase-catalyzed glycosylation of glycerol from sucrose, to synthesize the cosmetic ingredient α-glucosyl glycerol (GG). The empirical model part was developed to capture nonspecific effects of high sucrose concentrations (up to 1.5 M) on microscopic steps of the enzymatic trans-glycosylation mechanism. Based on verified predictions of the enzyme performance under initial rate conditions (Level 1), the hybrid model was expanded by microscopic terms of the reverse reaction to account for the full-time course of GG synthesis (Level 2). Lastly (Level 3), the application of the hybrid model for comprehensive window-of-operation analysis and constrained optimization of the GG production (~250 g/L) was demonstrated. Using two candidate sucrose phosphorylases (from Leuconostoc mesenteroides and Bifidobacterium adolescentis), we reveal the hybrid model as a powerful tool of "process decision making" to guide rational selection of the best-suited enzyme catalyst. Our study exemplifies a closing of the gap between enzyme kinetic models considered for mechanistic research and applicable in technologically relevant reaction conditions; and it highlights the important benefit thus realizable for biocatalytic process development.


Asunto(s)
Bifidobacterium adolescentis/metabolismo , Biocatálisis , Glucósidos/metabolismo , Leuconostoc mesenteroides/metabolismo , Modelos Biológicos , Sacarosa/metabolismo
4.
Biotechnol Biofuels ; 14(1): 134, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112242

RESUMEN

BACKGROUND: Cellodextrin phosphorylase (CdP; EC 2.4.1.49) catalyzes the iterative ß-1,4-glycosylation of cellobiose using α-D-glucose 1-phosphate as the donor substrate. Cello-oligosaccharides (COS) with a degree of polymerization (DP) of up to 6 are soluble while those of larger DP self-assemble into solid cellulose material. The soluble COS have attracted considerable attention for their use as dietary fibers that offer a selective prebiotic function. An efficient synthesis of soluble COS requires good control over the DP of the products formed. A mathematical model of the iterative enzymatic glycosylation would be important to facilitate target-oriented process development. RESULTS: A detailed time-course analysis of the formation of COS products from cellobiose (25 mM, 50 mM) and α-D-glucose 1-phosphate (10-100 mM) was performed using the CdP from Clostridium cellulosi. A mechanism-based, Michaelis-Menten type mathematical model was developed to describe the kinetics of the iterative enzymatic glycosylation of cellobiose. The mechanistic model was combined with an empirical description of the DP-dependent self-assembly of the COS into insoluble cellulose. The hybrid model thus obtained was used for kinetic parameter determination from time-course fits performed with constraints derived from initial rate data. The fitted hybrid model provided excellent description of the experimental dynamics of the COS in the DP range 3-6 and also accounted for the insoluble product formation. The hybrid model was suitable to disentangle the complex relationship between the process conditions used (i.e., substrate concentration, donor/acceptor ratio, reaction time) and the reaction output obtained (i.e., yield and composition of soluble COS). Model application to a window-of-operation analysis for the synthesis of soluble COS was demonstrated on the example of a COS mixture enriched in DP 4. CONCLUSIONS: The hybrid model of CdP-catalyzed iterative glycosylation is an important engineering tool to study and optimize the biocatalytic synthesis of soluble COS. The kinetic modeling approach used here can be of a general interest to be applied to other iteratively catalyzed enzymatic reactions of synthetic importance.

5.
Biotechnol Bioeng ; 117(10): 2933-2943, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32573774

RESUMEN

Chemical group-transfer reactions by hydrolytic enzymes have considerable importance in biocatalytic synthesis and are exploited broadly in commercial-scale chemical production. Mechanistically, these reactions have in common the involvement of a covalent enzyme intermediate which is formed upon enzyme reaction with the donor substrate and is subsequently intercepted by a suitable acceptor. Here, we studied the glycosylation of glycerol from sucrose by sucrose phosphorylase (SucP) to clarify a peculiar, yet generally important characteristic of this reaction: partitioning between glycosylation of glycerol and hydrolysis depends on the type and the concentration of the donor substrate used (here: sucrose, α-d-glucose 1-phosphate (G1P)). We develop a kinetic framework to analyze the effect and provide evidence that, when G1P is used as donor substrate, hydrolysis occurs not only from the ß-glucosyl-enzyme intermediate (E-Glc), but additionally from a noncovalent complex of E-Glc and substrate which unlike E-Glc is unreactive to glycerol. Depending on the relative rates of hydrolysis of free and substrate-bound E-Glc, inhibition (Leuconostoc mesenteroides SucP) or apparent activation (Bifidobacterium adolescentis SucP) is observed at high donor substrate concentration. At a G1P concentration that excludes the substrate-bound E-Glc, the transfer/hydrolysis ratio changes to a value consistent with reaction exclusively through E-Glc, independent of the donor substrate used. Collectively, these results give explanation for a kinetic behavior of SucP not previously accounted for, provide essential basis for design and optimization of the synthetic reaction, and establish a theoretical framework for the analysis of kinetically analogous group-transfer reactions by hydrolytic enzymes.


Asunto(s)
Bifidobacterium adolescentis/enzimología , Glucosiltransferasas/metabolismo , Leuconostoc mesenteroides/enzimología , Sacarosa/metabolismo , Catálisis , Glicosilación , Hidrólisis , Cinética , Especificidad por Sustrato
6.
Biotechnol Biofuels ; 8: 157, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26413156

RESUMEN

BACKGROUND: Unlike xylose-converting natural yeasts, recombinant strains of Saccharomyces cerevisiae expressing the same xylose assimilation pathway produce under anaerobic conditions xylitol rather than ethanol from xylose at low specific xylose conversion rates. Despite intense research efforts over the last two decades, differences in these phenotypes cannot be explained by current metabolic and kinetic models. To improve our understanding how metabolic flux of xylose carbon to ethanol is controlled, we developed a novel kinetic model based on enzyme mechanisms and applied quantitative metabolite profiling together with enzyme activity analysis to study xylose-to-ethanol metabolisms of Candida tenuis CBS4435 (q xylose = 0.10 g/gdc/h, 25 °C; Y ethanol = 0.44 g/g; Y xylitol = 0.09 g/g) and the recombinant S. cerevisiae strain BP000 (q xylose = 0.07 g/gdc/h, 30 °C; Y ethanol = 0.24 g/g; Y xylitol = 0.43 g/g), both expressing the same xylose reductase (XR), comprehensively. RESULTS: Results from strain-to-strain metabolic control analysis indicated that activity levels of XR and the maximal flux capacity of the upper glycolysis (UG; both ≥ tenfold higher in CBS4435) contributed predominantly to phenotype differentiation while reactions from the oxidative pentose phosphate pathway played minor roles. Intracellular metabolite profiles supported results obtained from kinetic modeling and indicated a positive correlation between pool sizes of UG metabolites and carbon flux through the UG. For CBS4435, fast carbon flux through the UG could be associated with an allosteric control of 6-phosphofructokinase (PFK) activity by fructose 6-phosphate. The ability of CBS4435 to keep UG metabolites at high levels could be explained by low glycerol 3-phosphate phosphatase (GPP, 17-fold lower in CBS4435) and high XR activities. CONCLUSIONS: By applying a systems biology approach in which we combined results obtained from metabolic control analysis based on kinetic modeling with data obtained from quantitative metabolite profiling and enzyme activity analyses, we could provide new insights into metabolic and kinetic interactions contributing to the control of carbon flux from xylose to ethanol. Supported by evidences presented two new targets, PFK and GPP, could be identified that aside from XR play pivotal roles in phenotype differentiation. Design of efficient and fast microbial ethanol producers in the future can certainly benefit from results presented in this study.

7.
FEBS J ; 282(21): 4130-40, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26260739

RESUMEN

Among α-hydroxy acid-oxidizing flavoenzymes l-lactate oxidase (LOX) is unique in featuring a second-sphere tyrosine (Tyr191 in Aerococcus viridans LOX; avLOX) at the binding site for the substrate's carboxylate group. Y191F, Y191L and Y191A variants of avLOX were constructed to affect a hydrogen-bond network connecting Tyr191 to the carboxylate of the bound ligand via the conserved Tyr40 and to examine consequent effects on enzymatic reactivity. Kinetic studies at 20 °C and pH 6.5 revealed that release of pyruvate product was decreased 4.7-fold (Y191F), 19-fold (Y191L) and 28-fold (Y191A) compared with wild-type enzyme (~ 141 s(-1)) and thus became mainly rate limiting for l-lactate oxidation by the variants at a steady-state under air-saturated conditions. In the Y191L and the Y191A variants, but not in the Y191F variant, l-lactate binding was also affected strongly by the site-directed substitution. Reduction of the flavin cofactor by l-lactate and its reoxidation by molecular oxygen were, however, comparatively weakly affected by the replacements of Tyr191. Unlike the related lactate monooxygenase, which prevents the fast dissociation of pyruvate to promote its oxidative decarboxylation by H2 O2 into acetate, CO2 and water as final reaction products, all avLOX variants retained their native oxidase activity where catalytic turnover results in the equivalent formation of H2O2. The 1.9 Å crystal structure of the Y191F variant bound with FMN and pyruvate revealed a strictly locally disruptive effect of the site-directed substitution. Product off-rates appear to be dictated by partitioning of residues including Tyr191 from an active-site lid loop into bulk solvent and modulation of the hydrogen bond strength that links Tyr40 with the pyruvate's carboxylate group. Overall, this study emphasizes the possibly high importance of contributions from second-sphere substrate-binding residues to the fine-tuning of reactivity in α-hydroxy acid-oxidizing flavoenzymes, requiring that the catalytic steps of flavin reduction and oxidation are properly timed with the physical step of α-keto acid product release.


Asunto(s)
Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Aerococcus/enzimología , Aerococcus/genética , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico/genética , Cristalografía por Rayos X , Enlace de Hidrógeno , Cinética , Oxigenasas de Función Mixta/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , Electricidad Estática , Tirosina/química
8.
Biotechnol Biofuels ; 7(1): 49, 2014 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-24708666

RESUMEN

BACKGROUND: Lignocellulose hydrolyzates present difficult substrates for ethanol production by the most commonly applied microorganism in the fermentation industries, Saccharomyces cerevisiae. High resistance towards inhibitors released during pretreatment and hydrolysis of the feedstock as well as efficient utilization of hexose and pentose sugars constitute major challenges in the development of S. cerevisiae strains for biomass-to-ethanol processes. Metabolic engineering and laboratory evolution are applied, alone and in combination, to adduce desired strain properties. However, physiological requirements for robust performance of S. cerevisiae in the conversion of lignocellulose hydrolyzates are not well understood. The herein presented S. cerevisiae strains IBB10A02 and IBB10B05 are descendants of strain BP10001, which was previously derived from the widely used strain CEN.PK 113-5D through introduction of a largely redox-neutral oxidoreductive xylose assimilation pathway. The IBB strains were obtained by a two-step laboratory evolution that selected for fast xylose fermentation in combination with anaerobic growth before (IBB10A02) and after adaption in repeated xylose fermentations (IBB10B05). Enzymatic hydrolyzates were prepared from up to 15% dry mass pretreated (steam explosion) wheat straw and contained glucose and xylose in a mass ratio of approximately 2. RESULTS: With all strains, yield coefficients based on total sugar consumed were high for ethanol (0.39 to 0.40 g/g) and notably low for fermentation by-products (glycerol: ≤0.10 g/g; xylitol: ≤0.08 g/g; acetate: 0.04 g/g). In contrast to the specific glucose utilization rate that was similar for all strains (qGlucose ≈ 2.9 g/gcell dry weight (CDW)/h), the xylose consumption rate was enhanced by a factor of 11.5 (IBB10A02; qXylose = 0.23 g/gCDW/h) and 17.5 (IBB10B05; qXylose = 0.35 g/gCDW/h) as compared to the qXylose of the non-evolved strain BP10001. In xylose-supplemented (50 g/L) hydrolyzates prepared from 5% dry mass, strain IBB10B05 displayed a qXylose of 0.71 g/gCDW/h and depleted xylose in 2 days with an ethanol yield of 0.30 g/g. Under the conditions used, IBB10B05 was also capable of slow anaerobic growth. CONCLUSIONS: Laboratory evolution of strain BP10001 resulted in effectively enhanced qXylose at almost complete retention of the fermentation capabilities previously acquired by metabolic engineering. Strain IBB10B05 is a sturdy candidate for intensification of lignocellulose-to-bioethanol processes.

9.
Microb Cell Fact ; 13(1): 37, 2014 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-24606998

RESUMEN

BACKGROUND: To effectively convert lignocellulosic feedstocks to bio-ethanol anaerobic growth on xylose constitutes an essential trait that Saccharomyces cerevisiae strains normally do not adopt through the selective integration of a xylose assimilation route as the rate of ATP-formation is below energy requirements for cell maintenance (mATP). To enable cell growth extensive evolutionary and/or elaborate rational engineering is required. However the number of available strains meeting demands for process integration are limited. In this work evolutionary engineering in just two stages coupled to strain selection under strict anaerobic conditions was carried out with BP10001 as progenitor. BP10001 is an efficient (Yethanol = 0.35 g/g) but slow (qethanol = 0.05 ± 0.01 g/gBM/h) xylose-metabolizing recombinant strain of Saccharomyces cerevisiae that expresses an optimized yeast-type xylose assimilation pathway. RESULTS: BP10001 was adapted in 5 generations to anaerobic growth on xylose by prolonged incubation for 91 days in sealed flasks. Resultant strain IBB10A02 displayed a specific growth rate µ of 0.025 ± 0.002 h-1 but produced large amounts of glycerol and xylitol. In addition growth was strongly impaired at pH below 6.0 and in the presence of weak acids. Using sequential batch selection and IBB10A02 as basis, IBB10B05 was evolved (56 generations). IBB10B05 was capable of fast (µ = 0.056 ± 0.003 h-1; qethanol = 0.28 ± 0.04 g/gBM/h), efficient (Yethanol = 0.35 ± 0.02 g/g), robust and balanced fermentation of xylose. Importantly, IBB10A02 and IBB10B05 displayed a stable phenotype. Unlike BP10001 both strains displayed an unprecedented biphasic formation of glycerol and xylitol along the fermentation time. Transition from a glycerol- to a xylitol-dominated growth phase, probably controlled by CO2/HCO3-, was accompanied by a 2.3-fold increase of mATP while YATP (= 87 ± 7 mmolATP/gBM) remained unaffected. As long as glycerol constituted the main by-product energetics of anaerobic growth on xylose and glucose were almost identical. CONCLUSIONS: In just 61 generation IBB10B05, displaying ~530% improved strain fitness, was evolved from BP10001. Its excellent xylose fermentation properties under industrial relevant conditions were proven and rendered it competitive. Based on detailed analysis of growth energetics we showed that mATP was predominantly determined by the type of polyol formed rather than, as previously assumed, substrate-specific.


Asunto(s)
Saccharomyces cerevisiae/metabolismo , Xilosa/metabolismo , Anaerobiosis , Enzimas/metabolismo , Ingeniería Genética , Glicerol/metabolismo , Concentración de Iones de Hidrógeno , Fenotipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Factores de Tiempo , Xilitol/biosíntesis
10.
Bioresour Technol ; 130: 439-48, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23313691

RESUMEN

Spent sulfite liquor (SSL) is a by-product of pulp and paper manufacturing and is a promising substrate for second-generation bioethanol production. The Saccharomyces cerevisiae strain IBB10B05 presented herein for SSL fermentation was enabled to xylose utilization by metabolic pathway engineering and laboratory evolution. Two SSLs from different process stages and with variable dry matter content were analyzed; SSL-Thin (14%) and SSL-S2 (30%). Hexose and pentose fermentation by strain IBB10B05 was efficient in 70% SSL matrix without any pretreatment. Ethanol yields varied between 0.31 and 0.44g/g total sugar, depending on substrate and process conditions used. Control of pH at 7.0 effectively reduced the inhibition by the acetic acid contained in the SSLs (up to 9g/L), thus enhancing specific xylose uptake rates (q(Xylose)) as well as ethanol yields. The total molar yield of fermentation by-products (glycerol, xylitol) was constant (0.36±0.03mol/mol xylose) at different q(Xylose). Compound distribution changed with glycerol and xylitol being chiefly formed at low and high q(Xylose), respectively.


Asunto(s)
Biocombustibles , Etanol/metabolismo , Glucosa/metabolismo , Sulfitos , Xilosa/metabolismo , Anaerobiosis , Reactores Biológicos , Fermentación , Glicerol/metabolismo , Residuos Industriales , Organismos Modificados Genéticamente , Saccharomyces cerevisiae , Triticum , Xilitol/metabolismo
11.
J Biotechnol ; 158(4): 192-202, 2012 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-21903144

RESUMEN

An advanced strategy of Saccharomyces cerevisiae strain development for fermentation of xylose applies tailored enzymes in the process of metabolic engineering. The coenzyme specificities of the NADPH-preferring xylose reductase (XR) and the NAD⁺-dependent xylitol dehydrogenase (XDH) have been targeted in previous studies by protein design or evolution with the aim of improving the recycling of NADH or NADPH in their two-step pathway, converting xylose to xylulose. Yeast strains expressing variant pairs of XR and XDH that according to in vitro kinetic data were suggested to be much better matched in coenzyme usage than the corresponding pair of wild-type enzymes, exhibit widely varying capabilities for xylose fermentation. To achieve coherence between enzyme properties and the observed strain performance during fermentation, we explored the published kinetic parameters for wild-type and engineered forms of XR and XDH as possible predictors of xylitol by-product formation (Y(xylitol)) in yeast physiology. We found that the ratio of enzymatic reaction rates using NADP(H) and NAD(H) that was calculated by applying intracellular reactant concentrations to rate equations derived from bi-substrate kinetic analysis, succeeded in giving a statistically reliable forecast of the trend effect on Y(xylitol). Prediction based solely on catalytic efficiencies with or without binding affinities for NADP(H) and NAD(H) were not dependable, and we define a minimum demand on the enzyme kinetic characterization to be performed for this purpose. An immediate explanation is provided for the typically lower Y(xylitol) in the current strains harboring XR engineered for utilization of NADH as compared to strains harboring XDH engineered for utilization of NADP⁺. The known XDH enzymes all exhibit a relatively high K(m) for NADP⁺ so that physiological boundary conditions are somewhat unfavorable for xylitol oxidation by NADP⁺. A criterion of physiological fitness is developed for engineered XR working together with wild-type XDH.


Asunto(s)
Aldehído Reductasa/metabolismo , Coenzimas/metabolismo , D-Xilulosa Reductasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Xilosa/metabolismo , Aldehído Reductasa/genética , Coenzimas/genética , D-Xilulosa Reductasa/genética , Etanol/metabolismo , Fermentación , Cinética , Ingeniería Metabólica/métodos , Mutación , NAD/genética , NAD/metabolismo , NADP/genética , NADP/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Xilitol/genética , Xilitol/metabolismo , Xilosa/genética
12.
J Biol Chem ; 287(3): 2119-29, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22123821

RESUMEN

Biosynthesis of UDP-glucuronic acid by UDP-glucose 6-dehydrogenase (UGDH) occurs through the four-electron oxidation of the UDP-glucose C6 primary alcohol in two NAD(+)-dependent steps. The catalytic reaction of UGDH is thought to involve a Cys nucleophile that promotes formation of a thiohemiacetal enzyme intermediate in the course of the first oxidation step. The thiohemiacetal undergoes further oxidation into a thioester, and hydrolysis of the thioester completes the catalytic cycle. Herein we present crystallographic and kinetic evidence for the human form of UGDH that clarifies participation of covalent catalysis in the enzymatic mechanism. Substitution of the putative catalytic base for water attack on the thioester (Glu(161)) by an incompetent analog (Gln(161)) gave a UGDH variant (E161Q) in which the hydrolysis step had become completely rate-limiting so that a thioester enzyme intermediate accumulated at steady state. By crystallizing E161Q in the presence of 5 mm UDP-glucose and 2 mm NAD(+), we succeeded in trapping a thiohemiacetal enzyme intermediate and determined its structure at 2.3 Å resolution. Cys(276) was covalently modified in the structure, establishing its role as catalytic nucleophile of the reaction. The thiohemiacetal reactive C6 was in a position suitable to become further oxidized by hydride transfer to NAD(+). The proposed catalytic mechanism of human UGDH involves Lys(220) as general base for UDP-glucose alcohol oxidation and for oxyanion stabilization during formation and breakdown of the thiohemiacetal and thioester enzyme intermediates. Water coordinated to Asp(280) deprotonates Cys(276) to function as an aldehyde trap and also provides oxyanion stabilization. Glu(161) is the Brønsted base catalytically promoting the thioester hydrolysis.


Asunto(s)
NAD/química , Uridina Difosfato Glucosa Deshidrogenasa/química , Uridina Difosfato Glucosa/química , Sustitución de Aminoácidos , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Cinética , Mutación Missense , NAD/genética , NAD/metabolismo , Oxidación-Reducción , Relación Estructura-Actividad , Uridina Difosfato Glucosa/genética , Uridina Difosfato Glucosa/metabolismo , Uridina Difosfato Glucosa Deshidrogenasa/genética , Uridina Difosfato Glucosa Deshidrogenasa/metabolismo
13.
J Biol Chem ; 287(9): 6655-67, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22194597

RESUMEN

The active site of mannitol 2-dehydrogenase from Pseudomonas fluorescens (PfM2DH) is connected with bulk solvent through a narrow protein channel that shows structural resemblance to proton channels utilized by redox-driven proton pumps. A key element of the PfM2DH channel is the "mobile" Glu(292), which was seen crystallographically to adopt distinct positions up and down the channel. It was suggested that the "down → up" conformational change of Glu(292) could play a proton relay function in enzymatic catalysis, through direct proton shuttling by the Glu or because the channel is opened for water molecules forming a chain along which the protons flow. We report evidence from site-directed mutagenesis (Glu(292) → Ala) substantiated by data from molecular dynamics simulations that support a role for Glu(292) as a gate in a water chain (von Grotthuss-type) mechanism of proton translocation. Occupancy of the up and down position of Glu(292) is influenced by the bonding and charge state of the catalytic acid base Lys(295), suggesting that channel opening/closing motions of the Glu are synchronized to the reaction progress. Removal of gatekeeper control in the E292A mutant resulted in a selective, up to 120-fold slowing down of microscopic steps immediately preceding catalytic oxidation of mannitol, consistent with the notion that formation of the productive enzyme-NAD(+)-mannitol complex is promoted by a corresponding position change of Glu(292), which at physiological pH is associated with obligatory deprotonation of Lys(295) to solvent. These results underscore the important role of conformational dynamics in the proton transfer steps of alcohol dehydrogenase catalysis.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Manitol Deshidrogenasas/química , Manitol Deshidrogenasas/metabolismo , Pseudomonas fluorescens/enzimología , Dominio Catalítico/fisiología , Cristalografía , Activación Enzimática/fisiología , Ácido Glutámico/química , Concentración de Iones de Hidrógeno , Manitol Deshidrogenasas/genética , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Protones , Pseudomonas fluorescens/genética , Agua/química , Agua/metabolismo
14.
FEBS J ; 278(8): 1264-76, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21299839

RESUMEN

The human pathogenic fungus Aspergillus fumigatus accumulates large amounts of intracellular mannitol to enhance its resistance against defense strategies of the infected host. To explore their currently unknown roles in mannitol metabolism, we studied A. fumigatus mannitol-1-phosphate 5-dehydrogenase (AfM1PDH) and mannitol 2-dehydrogenase (AfM2DH), each recombinantly produced in Escherichia coli, and performed a detailed steady-state kinetic characterization of the two enzymes at 25 °C and pH 7.1. Primary kinetic isotope effects resulting from deuteration of alcohol substrate or NADH showed that, for AfM1PDH, binding of D-mannitol 1-phosphate and NAD(+) is random, whereas D-fructose 6-phosphate binds only after NADH has bound to the enzyme. Binding of substrate and NAD(H) by AfM2DH is random for both D-mannitol oxidation and D-fructose reduction. Hydride transfer is rate-determining for D-mannitol 1-phosphate oxidation by AfM1PDH (k(cat) = 10.6 s(-1)) as well as D-fructose reduction by AfM2DH (k(cat) = 94 s(-1)). Product release steps control the maximum rates in the other direction of the two enzymatic reactions. Free energy profiles for the enzymatic reaction under physiological boundary conditions suggest that AfM1PDH primarily functions as a D-fructose-6-phosphate reductase, whereas AfM2DH acts in D-mannitol oxidation, thus establishing distinct routes for production and mobilization of mannitol in A. fumigatus. ATP, ADP and AMP do not affect the activity of AfM1PDH, suggesting the absence of flux control by cellular energy charge at the level of D-fructose 6-phosphate reduction. AfM1PDH is remarkably resistant to inactivation by heat (half-life at 40 °C of 20 h), consistent with the idea that formation of mannitol is an essential component of the temperature stress response of A. fumigatus. Inhibition of AfM1PDH might be a useful target for therapy of A. fumigatus infections.


Asunto(s)
Aspergillus fumigatus/enzimología , Manitol Deshidrogenasas/metabolismo , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Aspergillus fumigatus/patogenicidad , Estabilidad de Enzimas , Cinética , Manitol Deshidrogenasas/antagonistas & inhibidores , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/antagonistas & inhibidores
15.
Appl Environ Microbiol ; 76(22): 7566-74, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20889786

RESUMEN

Little is known about how the general lack of efficiency with which recombinant Saccharomyces cerevisiae strains utilize xylose affects the yeast metabolome. Quantitative metabolomics was therefore performed for two xylose-fermenting S. cerevisiae strains, BP000 and BP10001, both engineered to produce xylose reductase (XR), NAD(+)-dependent xylitol dehydrogenase and xylulose kinase, and the corresponding wild-type strain CEN.PK 113-7D, which is not able to metabolize xylose. Contrary to BP000 expressing an NADPH-preferring XR, BP10001 expresses an NADH-preferring XR. An updated protocol of liquid chromatography/tandem mass spectrometry that was validated by applying internal (13)C-labeled metabolite standards was used to quantitatively determine intracellular pools of metabolites from the central carbon, energy, and redox metabolism and of eight amino acids. Metabolomic responses to different substrates, glucose (growth) or xylose (no growth), were analyzed for each strain. In BP000 and BP10001, flux through glycolysis was similarly reduced (∼27-fold) when xylose instead of glucose was metabolized. As a consequence, (i) most glycolytic metabolites were dramatically (≤ 120-fold) diluted and (ii) energy and anabolic reduction charges were affected due to decreased ATP/AMP ratios (3- to 4-fold) and reduced NADP(+) levels (∼3-fold), respectively. Contrary to that in BP000, the catabolic reduction charge was not altered in BP10001. This was due mainly to different utilization of NADH by XRs in BP000 (44%) and BP10001 (97%). Thermodynamic analysis complemented by enzyme kinetic considerations suggested that activities of pentose phosphate pathway enzymes and the pool of fructose-6-phosphate are potential factors limiting xylose utilization. Coenzyme and ATP pools did not rate limit flux through xylose pathway enzymes.


Asunto(s)
Metabolómica , Saccharomyces cerevisiae/metabolismo , Xilosa/metabolismo , Adenosina Trifosfato/metabolismo , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Isótopos de Carbono/metabolismo , Cromatografía Liquida , D-Xilulosa Reductasa/genética , D-Xilulosa Reductasa/metabolismo , Fermentación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Coloración y Etiquetado/métodos , Espectrometría de Masas en Tándem , Termodinámica
16.
J Biol Chem ; 285(40): 30644-53, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20639204

RESUMEN

Directional preference in catalysis is often used to distinguish alcohol dehydrogenases from carbonyl reductases. However, the mechanistic basis underpinning this discrimination is weak. In mannitol 2-dehydrogenase from Pseudomonas fluorescens, stabilization of (partial) negative charge on the substrate oxyanion by the side chains of Asn-191 and Asn-300 is a key feature of catalysis in the direction of alcohol oxidation. We have disrupted this ability through individual and combined substitutions of the two asparagines by aspartic acid. Kinetic data and their thermodynamic analysis show that the internal equilibrium of enzyme-NADH-fructose and enzyme-NAD(+)-mannitol (K(int)) was altered dramatically (10(4)- to 10(5)-fold) from being balanced in the wild-type enzyme (K(int) ≈ 3) to favoring enzyme-NAD(+)-mannitol in the single site mutants, N191D and N300D. The change in K(int) reflects a selective slowing down of the mannitol oxidation rate, resulting because Asn --> Asp replacement (i) disfavors partial abstraction of alcohol proton by Lys-295 in a step preceding catalytic hydride transfer, and (ii) causes stabilization of a nonproductive enzyme-NAD(+)-mannitol complex. N191D and N300D appear to lose fructose binding affinity due to deprotonation of the respective Asp above apparent pK values of 5.3 ± 0.1 and 6.3 ± 0.2, respectively. The mutant incorporating both Asn-->Asp substitutions behaved as a slow "fructose reductase" at pH 5.2, lacking measurable activity for mannitol oxidation in the pH range 6.8-10. A mechanism is suggested in which polarization of the substrate carbonyl by a doubly protonated diad of Asp and Lys-295 facilitates NADH-dependent reduction of fructose by N191D and N300D under optimum pH conditions. Creation of an effectively "one-way" reductase by active-site redesign of a parent dehydrogenase has not been previously reported and holds promise in the development of carbonyl reductases for application in organic synthesis.


Asunto(s)
Sustitución de Aminoácidos , Dominio Catalítico , Manitol Deshidrogenasas/química , Pseudomonas fluorescens/enzimología , Concentración de Iones de Hidrógeno , Cinética , Manitol , Manitol Deshidrogenasas/genética , Mutación Missense , Oxidación-Reducción , Pseudomonas fluorescens/genética , Especificidad por Sustrato/genética
17.
Microb Cell Fact ; 9: 16, 2010 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-20219100

RESUMEN

BACKGROUND: In spite of the substantial metabolic engineering effort previously devoted to the development of Saccharomyces cerevisiae strains capable of fermenting both the hexose and pentose sugars present in lignocellulose hydrolysates, the productivity of reported strains for conversion of the naturally most abundant pentose, xylose, is still a major issue of process efficiency. Protein engineering for targeted alteration of the nicotinamide cofactor specificity of enzymes catalyzing the first steps in the metabolic pathway for xylose was a successful approach of reducing xylitol by-product formation and improving ethanol yield from xylose. The previously reported yeast strain BP10001, which expresses heterologous xylose reductase from Candida tenuis in mutated (NADH-preferring) form, stands for a series of other yeast strains designed with similar rational. Using 20 g/L xylose as sole source of carbon, BP10001 displayed a low specific uptake rate qxylose (g xylose/g dry cell weight/h) of 0.08. The study presented herein was performed with the aim of analysing (external) factors that limit qxylose of BP10001 under xylose-only and mixed glucose-xylose substrate conditions. We also carried out a comprehensive investigation on the currently unclear role of coenzyme utilization, NADPH compared to NADH, for xylose reduction during co-fermentation of glucose and xylose. RESULTS: BP10001 and BP000, expressing C. tenuis xylose reductase in NADPH-preferring wild-type form, were used. Glucose and xylose (each at 10 g/L) were converted sequentially, the corresponding qsubstrate values being similar for each strain (glucose: 3.0; xylose: 0.05). The distribution of fermentation products from glucose was identical for both strains whereas when using xylose, BP10001 showed enhanced ethanol yield (BP10001 0.30 g/g; BP000 0.23 g/g) and decreased yields of xylitol (BP10001 0.26 g/g; BP000 0.36 g/g) and glycerol (BP10001 0.023 g/g; BP000 0.072 g/g) as compared to BP000. Increase in xylose concentration from 10 to 50 g/L resulted in acceleration of substrate uptake by BP10001 (0.05 - 0.14 g/g CDW/h) and reduction of the xylitol yield (0.28 g/g - 0.15 g/g). In mixed substrate batches, xylose was taken up at low glucose concentrations (< 4 g/L) and up to fivefold enhanced xylose uptake rate was found towards glucose depletion. A fed-batch process designed to maintain a "stimulating" level of glucose throughout the course of xylose conversion provided a qxylose that had an initial value of 0.30 +/- 0.04 g/g CDW/h and decreased gradually with time. It gave product yields of 0.38 g ethanol/g total sugar and 0.19 g xylitol/g xylose. The effect of glucose on xylose utilization appears to result from the enhanced flux of carbon through glycolysis and the pentose phosphate pathway under low-glucose reaction conditions. CONCLUSIONS: Relative improvements in the distribution of fermentation products from xylose that can be directly related to a change in the coenzyme preference of xylose reductase from NADPH in BP000 to NADH in BP10001 increase in response to an increase in the initial concentration of the pentose substrate from 10 to 50 g/L. An inverse relationship between xylose uptake rate and xylitol yield for BP10001 implies that xylitol by-product formation is controlled not only by coenzyme regeneration during two-step oxidoreductive conversion of xylose into xylulose. Although xylose is not detectably utilized at glucose concentrations greater than 4 g/L, the presence of a low residual glucose concentration (< 2 g/L) promotes the uptake of xylose and its conversion into ethanol with only moderate xylitol by-product formation. A fed-batch reaction that maintains glucose in the useful concentration range and provides a constant qglucose may be useful for optimizing qxylose in processes designed for co-fermentation of glucose and xylose.


Asunto(s)
Aldehído Reductasa/metabolismo , Candida/enzimología , Coenzimas/metabolismo , Fermentación , Proteínas Fúngicas/metabolismo , Ingeniería Genética , Glucosa/metabolismo , Saccharomyces cerevisiae/genética , Xilosa/metabolismo , Aldehído Reductasa/química , Aldehído Reductasa/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Expresión Génica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
18.
Biochem J ; 425(2): 455-63, 2009 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-19857201

RESUMEN

The side chains of Asn191 and Asn300 constitute a characteristic structural motif of the active site of Pseudomonas fluorescens mannitol 2-dehydrogenase that lacks precedent in known alcohol dehydrogenases and resembles the canonical oxyanion binding pocket of serine proteases. We have used steady-state and transient kinetic studies of the effects of varied pH and deuterium isotopic substitutions in substrates and solvent on the enzymatic rates to delineate catalytic consequences resulting from individual and combined replacements of the two asparagine residues by alanine. The rate constants for the overall hydride transfer to and from C-2 of mannitol, which were estimated as approximately 5 x 102 s-1 and approximately 1.5 x 103 s-1 in the wild-type enzyme respectively, were selectively slowed, between 540- and 2700-fold, in single-site mannitol 2-dehydrogenase mutants. These effects were additive in the corresponding doubly mutated enzyme, suggesting independent functioning of the two asparagine residues in catalysis. Partial disruption of the oxyanion hole in single-site mutants caused an upshift, by >or=1.2 pH units, in the kinetic pK of the catalytic acid-base Lys295 in the enzyme-NAD+-mannitol complex. The oxyanion hole of mannitol 2-dehydrogenase is suggested to drive a precatalytic conformational equilibrium at the ternary complex level in which the reactive group of the substrate is 'activated' for chemical conversion through its precise alignment with the unprotonated side chain of Lys295 (mannitol oxidation) and C=O bond polarization by the carboxamide moieties of Asn191 and Asn300 (fructose reduction). In the subsequent hydride transfer step, the two asparagine residues provide approximately 40 kJ/mol of electrostatic stabilization.


Asunto(s)
Alcohol Deshidrogenasa/química , Manitol Deshidrogenasas/química , Pseudomonas fluorescens/enzimología , Secuencias de Aminoácidos , Asparagina , Catálisis , Dominio Catalítico , Cinética , Estabilidad Proteica , Electricidad Estática
19.
Biotechnol J ; 4(5): 684-94, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19452479

RESUMEN

Metabolic engineering of Saccharomyces cerevisiae for xylose fermentation has often relied on insertion of a heterologous pathway consisting of nicotinamide adenine dinucleotide (phosphate) NAD(P)H-dependent xylose reductase (XR) and NAD(+)-dependent xylitol dehydrogenase (XDH). Low ethanol yield, formation of xylitol and other fermentation by-products are seen for many of the S. cerevisiae strains constructed in this way. This has been ascribed to incomplete coenzyme recycling in the steps catalyzed by XR and XDH. Despite various protein-engineering efforts to alter the coenzyme specificity of XR and XDH individually, a pair of enzymes displaying matched utilization of NAD(H) and NADP(H) was not previously reported. We have introduced multiple site-directed mutations in the coenzyme-binding pocket of Galactocandida mastotermitis XDH to enable activity with NADP(+), which is lacking in the wild-type enzyme. We describe four enzyme variants showing activity for xylitol oxidation by NADP(+) and NAD(+). One of the XDH variants utilized NADP(+) about 4 times more efficiently than NAD(+). This is close to the preference for NADPH compared with NADH in mutants of Candida tenuis XR. Compared to an S. cerevisiae-reference strain expressing the genes for the wild-type enzymes, the strains comprising the gene encoding the mutated XDH in combination a matched XR mutant gene showed up to 50% decreased glycerol yield without increase in ethanol during xylose fermentation.


Asunto(s)
Aldehído Reductasa/genética , D-Xilulosa Reductasa/genética , Saccharomyces cerevisiae/enzimología , Xilosa/metabolismo , Aldehído Reductasa/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Candida/enzimología , Candida/genética , Coenzimas/metabolismo , D-Xilulosa Reductasa/metabolismo , Fermentación , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Ingeniería de Proteínas/métodos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Xilitol/metabolismo
20.
Biochem J ; 421(1): 43-9, 2009 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-19368528

RESUMEN

Despite their widely varying physiological functions in carbonyl metabolism, AKR2B5 (Candida tenuis xylose reductase) and many related enzymes of the aldo-keto reductase protein superfamily utilise PQ (9,10-phenanthrenequinone) as a common in vitro substrate for NAD(P)H-dependent reduction. The catalytic roles of the conserved active-site residues (Tyr51, Lys80 and His113) of AKR2B5 in the conversion of the reactive alpha-dicarbonyl moiety of PQ are not well understood. Using wild-type and mutated (Tyr51, Lys80 and His113 individually replaced by alanine) forms of AKR2B5, we have conducted steady-state and transient kinetic studies of the effects of varied pH and deuterium isotopic substitutions in coenzyme and solvent on the enzymatic rates of PQ reduction. Each mutation caused a 10(3)-10(4)-fold decrease in the rate constant for hydride transfer from NADH to PQ, whose value in the wild-type enzyme was determined as approximately 8 x 10(2) s(-1). The data presented support an enzymic mechanism in which a catalytic proton bridge from the protonated side chain of Lys80 (pK=8.6+/-0.1) to the carbonyl group adjacent to the hydride acceptor carbonyl facilitates the chemical reaction step. His113 contributes to positioning of the PQ substrate for catalysis. Contrasting its role as catalytic general acid for conversion of the physiological substrate xylose, Tyr51 controls release of the hydroquinone product. The proposed chemistry of AKR2B5 action involves delivery of both hydrogens required for reduction of the alpha-dicarbonyl substrate to the carbonyl group undergoing (stereoselective) transformation. Hydride transfer from NADH probably precedes the transfer of a proton from Tyr51 whose pK of 7.3+/-0.3 in the NAD+-bound enzyme appears suitable for protonation of a hydroquinone anion (pK=8.8). These results show that the mechanism of AKR2B5 is unusually plastic in the exploitation of the active-site residues, for the catalytic assistance provided to carbonyl group reduction in alpha-dicarbonyls differs from that utilized in the conversion of xylose.


Asunto(s)
Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/metabolismo , Aldehído Reductasa/metabolismo , Candida/enzimología , NAD/metabolismo , Fenantrenos/metabolismo , Aldo-Ceto Reductasas , Concentración de Iones de Hidrógeno , Cinética , Estructura Molecular , NAD/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA