RESUMEN
The genus Clostridium is a large and diverse group within the Bacillota (formerly Firmicutes), whose members can encode useful complex traits such as solvent production, gas-fermentation, and lignocellulose breakdown. We describe 270 genome sequences of solventogenic clostridia from a comprehensive industrial strain collection assembled by Professor David Jones that includes 194 C. beijerinckii, 57 C. saccharobutylicum, 4 C. saccharoperbutylacetonicum, 5 C. butyricum, 7 C. acetobutylicum, and 3 C. tetanomorphum genomes. We report methods, analyses and characterization for phylogeny, key attributes, core biosynthetic genes, secondary metabolites, plasmids, prophage/CRISPR diversity, cellulosomes and quorum sensing for the 6 species. The expanded genomic data described here will facilitate engineering of solvent-producing clostridia as well as non-model microorganisms with innately desirable traits. Sequences could be applied in conventional platform biocatalysts such as yeast or Escherichia coli for enhanced chemical production. Recently, gene sequences from this collection were used to engineer Clostridium autoethanogenum, a gas-fermenting autotrophic acetogen, for continuous acetone or isopropanol production, as well as butanol, butanoic acid, hexanol and hexanoic acid production.
Asunto(s)
Clostridium , Genoma Bacteriano , Filogenia , Clostridium/genética , Solventes , FermentaciónRESUMEN
Bridging molecular information to ecosystem-level processes would provide the capacity to understand system vulnerability and, potentially, a means for assessing ecosystem health. Here, we present an integrated dataset containing environmental and metagenomic information from plant-associated microbial communities, plant transcriptomics, plant and soil metabolomics, and soil chemistry and activity characterization measurements derived from the model tree species Populus trichocarpa. Soil, rhizosphere, root endosphere, and leaf samples were collected from 27 different P. trichocarpa genotypes grown in two different environments leading to an integrated dataset of 318 metagenomes, 98 plant transcriptomes, and 314 metabolomic profiles that are supported by diverse soil measurements. This expansive dataset will provide insights into causal linkages that relate genomic features and molecular level events to system-level properties and their environmental influences.
Asunto(s)
Metagenoma , Microbiota , Populus , Transcriptoma , Hongos/genética , Perfilación de la Expresión Génica , Genotipo , Populus/genética , SueloRESUMEN
An enrichment of sulfidic sediments from Zodletone spring was sequenced as a metagenome. Draft genomes representing Cloacimonadota, Deltabacterota, Firmicutes, and Patescibacteria were binned and annotated and will aid functional genomics and cultivation efforts.
RESUMEN
Carbon amendments designed to remediate environmental contamination lead to substantial perturbations when injected into the subsurface. For the remediation of uranium contamination, carbon amendments promote reducing conditions to allow microorganisms to reduce uranium to an insoluble, less mobile state. However, the reproducibility of these amendments and underlying microbial community assembly mechanisms have rarely been investigated in the field. In this study, two injections of emulsified vegetable oil were performed in 2009 and 2017 to immobilize uranium in the groundwater at Oak Ridge, TN, USA. Our objectives were to determine whether and how the injections resulted in similar abiotic and biotic responses and their underlying community assembly mechanisms. Both injections caused similar geochemical and microbial succession. Uranium, nitrate, and sulfate concentrations in the groundwater dropped following the injection, and specific microbial taxa responded at roughly the same time points in both injections, including Geobacter, Desulfovibrio, and members of the phylum Comamonadaceae, all of which are well established in uranium, nitrate, and sulfate reduction. Both injections induced a transition from relatively stochastic to more deterministic assembly of microbial taxonomic and phylogenetic community structures based on 16S rRNA gene analysis. We conclude that geochemical and microbial successions after biostimulation are reproducible, likely owing to the selection of similar phylogenetic groups in response to EVO injection.
RESUMEN
Temporal variation in community composition is central to our understanding of the assembly and functioning of microbial communities, yet the controls over temporal dynamics for microbiomes of long-lived plants, such as trees, remain unclear. Temporal variation in tree microbiomes could arise primarily from seasonal (i.e., intra-annual) fluctuations in community composition or from longer-term changes across years as host plants age. To test these alternatives, we experimentally isolated temporal variation in plant microbiome composition using a common garden and clonally propagated plants, and we used amplicon sequencing to characterize bacterial/archaeal and fungal communities in the leaf endosphere, root endosphere, and rhizosphere of two Populus spp. over four seasons across two consecutive years. Microbial community composition differed among seasons and years (which accounted for up to 21% of the variation in microbial community composition) and was correlated with seasonal dissimilarity in climatic conditions. However, microbial community dissimilarity was also positively correlated with time, reflecting longer-term compositional shifts as host trees aged. Together, our findings demonstrate that temporal patterns in tree microbiomes arise from both seasonal fluctuations and longer-term changes, which interact to generate unique seasonal patterns each year. In addition to shedding light on two important controls over the assembly of plant microbiomes, our results also suggest future studies of tree microbiomes should account for background temporal dynamics when testing the drivers of spatial patterns in microbial community composition and temporal responses of plant microbiomes to environmental change.IMPORTANCEMicrobiomes are integral to the health of host plants, but we have a limited understanding of the factors that control how the composition of plant microbiomes changes over time. Especially little is known about the microbiome of long-lived trees, relative to annual and non-woody plants. We tested how tree microbiomes changed between seasons and years in poplar (genus Populus), which are widespread and ecologically important tree species that also serve as important biofuel feedstocks. We found the composition of bacterial, archaeal, and fungal communities differed among seasons, but these seasonal differences depended on year. This dependence was driven by longer-term changes in microbial composition as host trees developed across consecutive years. Our findings suggest that temporal variation in tree microbiomes is driven by both seasonal fluctuations and longer-term (i.e., multiyear) development.
Asunto(s)
Microbiota , Populus , Populus/microbiología , Microbiología del Suelo , Raíces de Plantas/microbiología , Bacterias/genética , Archaea , Microbiota/genética , ÁrbolesRESUMEN
The mammalian mouth is colonized by complex microbial communities, adapted to specific niches, and in homeostasis with the host. Individual microbes interact metabolically and rely primarily on nutrients provided by the host, with which they have potentially co-evolved along the mammalian lineages. The oral environment is similar across mammals, but the diversity, specificity, and evolution of community structure in related or interacting mammals are little understood. Here, we compared the oral microbiomes of dogs with those of wild wolves and humans. In dogs, we found an increased microbial diversity relative to wolves, possibly related to the transition to omnivorous nutrition following domestication. This includes a larger diversity of Patescibacteria than previously reported in any other oral microbiota. The oral microbes are most distinct at bacterial species or strain levels, with few if any shared between humans and canids, while the close evolutionary relationship between wolves and dogs is reflected by numerous shared taxa. More taxa are shared at higher taxonomic levels including with humans, supporting their more ancestral common mammalian colonization followed by diversification. Phylogenies of selected oral bacterial lineages do not support stable human-dog microbial transfers but suggest diversification along mammalian lineages (apes and canids). Therefore, despite millennia of cohabitation and close interaction, the host and its native community controls and limits the assimilation of new microbes, even if closely related. Higher resolution metagenomic and microbial physiological studies, covering a larger mammalian diversity, should help understand how oral communities assemble, adapt, and interact with their hosts.IMPORTANCENumerous types of microbes colonize the mouth after birth and play important roles in maintaining oral health. When the microbiota-host homeostasis is perturbed, proliferation of some bacteria leads to diseases such as caries and periodontitis. Unlike the gut microbiome, the diversity of oral microbes across the mammalian evolutionary space is not understood. Our study compared the oral microbiomes of wild wolves, dogs, and apes (humans, chimpanzees, and bonobos), with the aim of identifying if microbes have been potentially exchanged between humans and dogs as a result of domestication and cohabitation. We found little if any evidence for such exchanges. The significance of our research is in finding that the oral microbiota and/or the host limit the acquisition of exogenous microbes, which is important in the context of natural exclusion of potential novel pathogens. We provide a framework for expanded higher-resolution studies across domestic and wild animals to understand resistance/resilience.
Asunto(s)
Microbioma Gastrointestinal , Hominidae , Microbiota , Lobos , Humanos , Animales , Perros , Mamíferos/microbiología , BacteriasRESUMEN
IMPORTANCE: Microbial community changes in response to climate change drivers have the potential to alter the trajectory of important ecosystem functions. In this paper, we show that while microbial communities in peatland systems responded to manipulations of temperature and CO2 concentrations, these changes were not associated with similar responses in peat decomposition rates over 3 years. It is unclear however from our current studies whether this functional resiliency over 3 years will continue over the longer time scales relevant to peatland ecosystem functions.
Asunto(s)
Microbiota , Suelo , Temperatura , Cambio ClimáticoRESUMEN
CRISPR-Cas9 tools have transformed genetic manipulation capabilities in the laboratory. Empirical rules-of-thumb have been developed for only a narrow range of model organisms, and mechanistic underpinnings for sgRNA efficiency remain poorly understood. This work establishes a novel feature set and new public resource, produced with quantum chemical tensors, for interpreting and predicting sgRNA efficiency. Feature engineering for sgRNA efficiency is performed using an explainable-artificial intelligence model: iterative Random Forest (iRF). By encoding quantitative attributes of position-specific sequences for Escherichia coli sgRNAs, we identify important traits for sgRNA design in bacterial species. Additionally, we show that expanding positional encoding to quantum descriptors of base-pair, dimer, trimer, and tetramer sequences captures intricate interactions in local and neighboring nucleotides of the target DNA. These features highlight variation in CRISPR-Cas9 sgRNA dynamics between E. coli and H. sapiens genomes. These novel encodings of sgRNAs enhance our understanding of the elaborate quantum biological processes involved in CRISPR-Cas9 machinery.
Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Inteligencia Artificial , ADN , Escherichia coli/genética , Edición Génica , HumanosRESUMEN
Hydrothermal systems form at divergent and convergent boundaries of lithospheric plates and within plates due to weakened crust and mantle plumes, playing host to diverse microbial ecosystems. Little is known of how differences in tectonic setting influence the geochemical and microbial compositions of these hydrothermal ecosystems. Here, coordinated geochemical and microbial community analyses were conducted on 87 high-temperature (>65°C) water and sediment samples from hot springs in Yellowstone National Park, Wyoming, USA (n = 41; mantle plume setting), Iceland (n = 41, divergent boundary), and Japan (n = 5; convergent boundary). Region-specific variation in geochemistry and sediment-associated 16S rRNA gene amplicon sequence variant (ASV) composition was observed, with 16S rRNA gene assemblages being nearly completely distinguished by region and pH being the most explanatory parameter within regions. Several low abundance ASVs exhibited cosmopolitan distributions across regions, while most high-abundance ASVs were only identified in specific regions. The presence of some cosmopolitan ASVs across regions argues against dispersal limitation primarily shaping the distribution of taxa among regions. Rather, the results point to local tectonic and geologic characteristics shaping the geochemistry of continental hydrothermal systems that then select for distinct microbial assemblages. These results provide new insights into the co-evolution of hydrothermal systems and their microbial communities.
Asunto(s)
Manantiales de Aguas Termales , Microbiota , Manantiales de Aguas Termales/química , ARN Ribosómico 16S/genética , Agua , Japón , FilogeniaRESUMEN
Desulfomicrobium sp. strain ZS1 is an obligate anaerobic, sulfate-reducing member of the Desulfobacterota from Zodletone Spring, an anoxic sulfide-rich spring in southwestern Oklahoma. Its complete genome was sequenced using a combination of Illumina and Oxford Nanopore platforms and encodes 3,364 proteins and 81 RNAs on a single chromosome.
RESUMEN
Pathogenic fungal infections in plants may, in some cases, lead to downstream systematic impacts on the plant metabolome and microbiome that may either alleviate or exacerbate the effects of the fungal pathogen. While Sphaerulina musiva is a well-characterized fungal pathogen which infects Populus tree species, an important wood fiber and biofuel feedstock, little is known about its systematic effects on the metabolome and microbiome of Populus. Here, we investigated the metabolome of Populus trichocarpa and Populus deltoides leaves and roots and the microbiome of the leaf and root endospheres, phylloplane, and rhizosphere to understand the systematic impacts of S. musiva abundance and infection on Populus species in a common garden field setting. We found that S. musiva is indeed present in both P. deltoides and P. trichocarpa, but S. musiva abundance was not statistically related to stem canker onset. We also found that the leaf and root metabolomes significantly differ between the two Populus species and that certain leaf metabolites, particularly the phenolic glycosides salirepin and salireposide, are diminished in canker-infected P. trichocarpa trees compared to their uninfected counterparts. Furthermore, we found significant associations between the metabolome, S. musiva abundance, and microbiome composition and α-diversity, particularly in P. trichocarpa leaves. Our results show that S. musiva colonizes both resistant and susceptible hosts and that the effects of S. musiva on susceptible trees are not confined to the site of canker infection. IMPORTANCE Poplar (Populus spp.) trees are ecologically and economically important trees throughout North America. However, many western North American poplar plantations are at risk due to the introduction of the nonnative fungal pathogen Sphaerulina musiva, which causes leaf spot and cankers, limiting their production. To better understand the interactions among the pathogen S. musiva, the poplar metabolome, and the poplar microbiome, we collected leaf, root, and rhizosphere samples from poplar trees consisting of 10 genotypes and two species with differential resistance to S. musiva in a common garden experiment. Here, we outline the nuanced relationships between the poplar metabolome, microbiome, and S. musiva, showing that S. musiva may affect poplar trees in tissues distal to the site of infection (i.e., stem). Our research contributes to improving the fundamental understanding of S. musiva and Populus sp. ecology and the utility of a holobiont approach in understanding plant disease.
Asunto(s)
Ascomicetos , Microbiota , Populus , Populus/genética , Ascomicetos/genética , Microbiota/genética , Árboles/microbiología , MetabolomaRESUMEN
"Cand. Nanosynbacter sp. HMT352" strain KC1 is an ectoparasitic saccharibacterium/TM7 that was co-isolated from a human saliva sample with its obligate bacterial host, Schaalia odontolytica. The genome of strain KC1 enables studies of the mechanisms and evolution of interspecies interactions and, for oral species, studies of their potential roles in health and disease.
RESUMEN
In eukaryotes, fine-scale maps of meiotic recombination events have greatly advanced our understanding of the factors that affect genomic variation patterns and evolution of traits. However, in bacteria that lack natural systems for sexual reproduction, unbiased characterization of recombination landscapes has remained challenging due to variable rates of genetic exchange and influence of natural selection. Here, to overcome these limitations and to gain a genome-wide view on recombination, we crossed Bacillus strains with different genetic distances using protoplast fusion. The offspring displayed complex inheritance patterns with one of the parents consistently contributing the major part of the chromosome backbone and multiple unselected fragments originating from the second parent. Our results demonstrate that this bias was in part due to the action of restriction-modification systems, whereas genome features like GC content and local nucleotide identity did not affect distribution of recombination events around the chromosome. Furthermore, we found that recombination occurred uniformly across the genome without concentration into hotspots. Notably, our results show that species-level genetic distance did not affect genome-wide recombination. This study provides a new insight into the dynamics of recombination in bacteria and a platform for studying recombination patterns in diverse bacterial species.
Asunto(s)
Bacillus , Bacillus/clasificación , Bacillus/genética , Mapeo Cromosómico , Evolución Molecular , Técnicas Genéticas , Recombinación Homóloga , Técnicas Microbiológicas , ProtoplastosRESUMEN
Plants are colonized by numerous microorganisms serving important symbiotic functions that are vital to plant growth and success. Understanding and harnessing these interactions will be useful in both managed and natural ecosystems faced with global change, but it is still unclear how variation in environmental conditions and soils influence the trajectory of these interactions. In this study, we examine how nitrogen addition alters plant-fungal interactions within two species of Populus - Populus deltoides and P. trichocarpa. In this experiment, we manipulated plant host, starting soil (native vs. away for each tree species), and nitrogen addition in a fully factorial replicated design. After ~10 weeks of growth, we destructively harvested the plants and characterized plant growth factors and the soil and root endosphere fungal communities using targeted amplicon sequencing of the ITS2 gene region. Overall, we found nitrogen addition altered plant growth factors, e.g., plant height, chlorophyll density, and plant N content. Interestingly, nitrogen addition resulted in a lower fungal alpha diversity in soils but not plant roots. Further, there was an interactive effect of tree species, soil origin, and nitrogen addition on soil fungal community composition. Starting soils collected from Oregon and West Virginia were dominated by the ectomycorrhizal fungi Inocybe (55.8% relative abundance), but interestingly when P. deltoides was grown in its native West Virginia soil, the roots selected for a high abundance of the arbuscular mycorrhizal fungi, Rhizophagus. These results highlight the importance of soil origin and plant species on establishing plant-fungal interactions.
RESUMEN
Here, we report the draft, nearly complete genome sequence of the human oral actinobacterium Schaalia odontolytica strain ORNL0103, which was isolated in association with "Candidatus Saccharibacteria" HMT352 strain ORNL0105. The genome was sequenced using a combination of Pacific Biosciences and Illumina platforms and encodes 1,948 proteins and 60 RNAs.
RESUMEN
Extremely thermophilic bacteria from the genus Caldicellulosiruptor can degrade polysaccharide components of plant cell walls and subsequently utilize the constituting mono- and oligosaccharides. Through metabolic engineering, ethanol and other industrially important end products can be produced. Previous experimental studies identified a variety of carbohydrate-active enzymes in model species Caldicellulosiruptor saccharolyticus and Caldicellulosiruptor bescii, while prior transcriptomic experiments identified their putative carbohydrate uptake transporters. We investigated the mechanisms of transcriptional regulation of carbohydrate utilization genes using a comparative genomics approach applied to 14 Caldicellulosiruptor species. The reconstruction of carbohydrate utilization regulatory network includes the predicted binding sites for 34 mostly local regulators and point to the regulatory mechanisms controlling expression of genes involved in degradation of plant biomass. The Rex and CggR regulons control the central glycolytic and primary redox reactions. The identified transcription factor binding sites and regulons were validated with transcriptomic and transcription start site experimental data for C. bescii grown on cellulose, cellobiose, glucose, xylan, and xylose. The XylR and XynR regulons control xylan-induced transcriptional response of genes involved in degradation of xylan and xylose utilization. The reconstructed regulons informed the carbohydrate utilization reconstruction analysis and improved functional annotations of 51 transporters and 11 catabolic enzymes. Using gene deletion, we confirmed that the shared ATPase component MsmK is essential for growth on oligo- and polysaccharides but not for the utilization of monosaccharides. By elucidating the carbohydrate utilization framework in C. bescii, strategies for metabolic engineering can be pursued to optimize yields of bio-based fuels and chemicals from lignocellulose. IMPORTANCE To develop functional metabolic engineering platforms for nonmodel microorganisms, a comprehensive understanding of the physiological and metabolic characteristics is critical. Caldicellulosiruptor bescii and other species in this genus have untapped potential for conversion of unpretreated plant biomass into industrial fuels and chemicals. The highly interactive and complex machinery used by C. bescii to acquire and process complex carbohydrates contained in lignocellulose was elucidated here to complement related efforts to develop a metabolic engineering platform with this bacterium. Guided by the findings here, a clearer picture of how C. bescii natively drives carbohydrate utilization is provided and strategies to engineer this bacterium for optimal conversion of lignocellulose to commercial products emerge.
RESUMEN
The integral role of microbial communities in plant growth and health is now widely recognized, and, increasingly, the constituents of the microbiome are being defined. While phylogenetic surveys have revealed the taxa present in a microbiome and show that this composition can depend on, and respond to, environmental perturbations, the challenge shifts to determining why particular microbes are selected and how they collectively function in concert with their host. In this study, we targeted the isolation of representative bacterial strains from environmental samples of Populus roots using a direct plating approach and compared them to amplicon-based sequencing analysis of root samples. The resulting culture collection contains 3,211 unique isolates representing 10 classes, 18 orders, 45 families, and 120 genera from 6 phyla, based on 16S rRNA gene sequence analysis. The collection accounts for â¼50% of the natural community of plant-associated bacteria as determined by phylogenetic analysis. Additionally, a representative set of 553 had their genomes sequenced to facilitate functional analyses. The top sequence variants in the amplicon data, identified as Pseudomonas, had multiple representatives within the culture collection. We then explore a simplified microbiome, comprised of 10 strains representing abundant taxa from environmental samples, and tested for their ability to reproducibly colonize Populus root tissue. The 10-member simplified community was able to reproducibly colonize on Populus roots after 21 days, with some taxa found in surface-sterilized aboveground tissue. This study presents a comprehensive collection of bacteria isolated from Populus for use in exploring microbial function and community inoculation experiments to understand basic concepts of plant and environmental selection. IMPORTANCE Microbial communities play an integral role in the health and survival of their plant hosts. Many studies have identified key members in these communities and led to the use of synthetic communities for elucidating their function; however, these studies are limited by the available cultured bacterial representatives. Here, we present a bacterial culture collection comprising 3,211 isolates that is representative of the root community of Populus. We then demonstrate the ability to examine underlying microbe-microbe interactions using a synthetic community approach. This culture collection will allow for the greater exploration of the microbial community function through targeted experimentation and manipulation.
RESUMEN
Expanding the portfolio of products that can be made from lignin will be critical to enabling a viable bio-based economy. Here, we engineer Pseudomonas putida for high-yield production of the tricarboxylic acid cycle-derived building block chemical, itaconic acid, from model aromatic compounds and aromatics derived from lignin. We develop a nitrogen starvation-detecting biosensor for dynamic two-stage bioproduction in which itaconic acid is produced during a non-growth associated production phase. Through the use of two distinct itaconic acid production pathways, the tuning of TCA cycle gene expression, deletion of competing pathways, and dynamic regulation, we achieve an overall maximum yield of 56% (mol/mol) and titer of 1.3 g/L from p-coumarate, and 1.4 g/L titer from monomeric aromatic compounds produced from alkali-treated lignin. This work illustrates a proof-of-principle that using dynamic metabolic control to reroute carbon after it enters central metabolism enables production of valuable chemicals from lignin at high yields by relieving the burden of constitutively expressing toxic heterologous pathways.