RESUMEN
The process of aging is defined by the breakdown of critical maintenance pathways leading to an accumulation of damage and its associated phenotypes. Aging affects many systems and is considered the greatest risk factor for a number of diseases. Therefore, interventions aimed at establishing resilience to aging should delay or prevent the onset of age-related diseases. Recent studies have shown a three-drug cocktail consisting of rapamycin, acarbose, and phenylbutyrate delayed the onset of physical, cognitive, and biological aging phenotypes in old mice. To test the ability of this drug cocktail to impact Alzheimer's disease (AD), an adeno-associated-viral vector model of AD was created. Mice were fed the drug cocktail 2 months prior to injection and allowed 3 months for phenotypic development. Cognitive phenotypes were evaluated through a spatial navigation learning task. To quantify neuropathology, immunohistochemistry was performed for AD proteins and pathways of aging. Results suggested the drug cocktail was able to increase resilience to cognitive impairment, inflammation, and AD protein aggregation while enhancing autophagy and synaptic integrity, preferentially in female cohorts. In conclusion, female mice were more susceptible to the development of early stage AD neuropathology and learning impairment, and more responsive to treatment with the drug cocktail in comparison to male mice. Translationally, a model of AD where females are more susceptible would have greater value as women have a greater burden and incidence of disease compared to men. These findings validate past results and provide the rationale for further investigations into enhancing resilience to early-stage AD by enhancing resilience to aging.
RESUMEN
The ability to quantify aging-related changes in histological samples is important, as it allows for evaluation of interventions intended to effect health span. We used a machine learning architecture that can be trained to detect and quantify these changes in the mouse kidney. Using additional held out data, we show validation of our model, correlation with scores given by pathologists using the Geropathology Research Network aging grading scheme, and its application in providing reproducible and quantifiable age scores for histological samples. Aging quantification also provides the insights into possible changes in image appearance that are independent of specific geropathology-specified lesions. Furthermore, we provide trained classifiers for H&E-stained slides, as well as tutorials on how to use these and how to create additional classifiers for other histological stains and tissues using our architecture. This architecture and combined resources allow for the high throughput quantification of mouse aging studies in general and specifically applicable to kidney tissues.
Asunto(s)
Envejecimiento , Aprendizaje Automático , Ratones , Animales , Envejecimiento/patología , RiñónRESUMEN
The ability to quantify aging-related changes in histological samples is important, as it allows for evaluation of interventions intended to effect health span. We used a machine learning architecture that can be trained to detect and quantify these changes in the mouse kidney. Using additional held out data, we show validation of our model, correlation with scores given by pathologists using the Geropathology Research Network aging grading scheme, and its application in providing reproducible and quantifiable age scores for histological samples. Aging quantification also provides the insights into possible changes in image appearance that are independent of specific geropathology-specified lesions. Furthermore, we provide trained classifiers for H&E-stained slides, as well as tutorials on how to use these and how to create additional classifiers for other histological stains and tissues using our architecture.This architecture and combined resources allow for the high throughput quantification of mouse aging studies in general and specifically applicable to kidney tissues.
RESUMEN
Background: Disruption of metabolic and bioenergetic homeostasis related to mitochondrial dysfunction is a key driver of aging biology. Therefore, targeting mitochondrial function would be a rational approach to slowing aging. Elamipretide (Elam, a.k.a. SS-31) is a peptide known to target mitochondria and suppress mammalian signs of aging. The present study was designed to examine the phenotypic effects of long-term Elam treatment on aging in C57BL/6 mice starting at 18 months of age. Methods: Mice were fed regular chow (RC diet) or a diet high in fat and sugar (HF diet) and treated with 3 mg/kg of Elam or saline subcutaneously 5 days per week for 10 months. Physiological performance assessments were conducted at 28 months of age. Results: Elam improved the physical performance of males but not females, while in females Elam improved cognitive performance and enhanced the maintenance of body weight and fat mass. It also improved diastolic function in both males and females, but to a greater extent in males. The HF diet over 10 months had a negative effect on health span, as it increased body fat and decreased muscle strength and heart function, especially in females. Conclusions: Elam enhanced healthy aging and cardiac function in both male and female mice, although the specific effects on function differed between sexes. In females, the treatment led to better cognitive performance and maintenance of body composition, while in males, performance on a rotating rod was preserved. These overall observations have translational implications for considering additional studies using Elam in therapeutic or preventive approaches for aging and age-related diseases.
RESUMEN
Pharmaceutical intervention of aging requires targeting multiple pathways, thus there is rationale to test combinations of drugs targeting different but overlapping processes. In order to determine if combining drugs shown to extend lifespan and healthy aging in mice would have greater impact than any individual drug, a cocktail diet containing 14 ppm rapamycin, 1000 ppm acarbose, and 1000 ppm phenylbutyrate was fed to 20-month-old C57BL/6 and HET3 4-way cross mice of both sexes for three months. Mice treated with the cocktail showed a sex and strain-dependent phenotype consistent with healthy aging including decreased body fat, improved cognition, increased strength and endurance, and decreased age-related pathology compared to mice treated with individual drugs or control. The severity of age-related lesions in heart, lungs, liver, and kidney was consistently decreased in mice treated with the cocktail compared to mice treated with individual drugs or control, suggesting an interactive advantage of the three drugs. This study shows that a combination of three drugs, each previously shown to enhance lifespan and health span in mice, is able to delay aging phenotypes in middle-aged mice more effectively than any individual drug in the cocktail over a 3-month treatment period.
Asunto(s)
Acarbosa , Sirolimus , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Fenilbutiratos/farmacología , Sirolimus/farmacologíaRESUMEN
Aging is a complex multidimensional process of progressive decline affecting multiple organ systems by a number of processes that are still not well understood. While many studies have focused on the approach of studying aging across multiple organs, assessment of the contribution of individual organs to overall aging processes is under appreciated. The ability to study and compare organs in the context of organismal aging has been documented recently using a geropathology grading platform in laboratory mice. This concept consists of identifying and grading age-related histologic lesions within organs to generate a quantitative lesion score for each organ, which is representative of the presence and degree of organ-related pathology, and can be compared to scores from other organs examined. This geropathology approach provides a powerful tool to elucidate the basic mechanisms of aging in multiple organs, as well as the response of organs to therapeutic interventions. Furthermore, ongoing work with the concept has expanded and adapted the geropathology grading system to other preclinical animal model species that are commonly used to understand disease associated phenotypes in aging humans, ultimately adding to the utility of the concept.
RESUMEN
The goals of this study were to examine the effect of stocking density on the stress response and disease susceptibility in juvenile rainbow trout (Oncorhynchus mykiss). Fish were sorted into one of 2 stocking densities (high density "HD", 20-40 kg/m³) or (low density, "LD", 4-8 kg/m³) and 3 stress indices (cortisol levels in serum and water, and neutrophil: lymphocyte (N:L) ratios from blood smears) were measured at multiple time points over 21 d. Serum cortisol was significantly increased at 1 h in LD samples and at 14 d in HD samples. Water cortisol concentrations were significantly higher in LD tanks as compared with HD tanks on day 14. N:L ratios were significantly higher in HD tanks on day 14 as compared with LD tanks and with baseline. The effect of stocking density on mortality after exposure to infectious hematopoietic necrosis virus (IHNV) was compared between fish held in HD or LD conditions, with or without prior acclimation to the different density conditions. No significant differences in survival were found between HD and LD treatments or between acclimated and nonacclimated treatments. Cumulative results indicate that 1) 1 to 4 gram rainbow trout did not generally demonstrate significant differences in stress indices at the density conditions tested over a 21-d period, 2) independent differences were found in 3 stress indices at day 14 after sorting into LD and HD holding conditions; and 3) LD and HD stocking densities did not have a significant effect on mortality due to IHNV.
Asunto(s)
Enfermedades de los Peces , Virus de la Necrosis Hematopoyética Infecciosa , Oncorhynchus mykiss , Animales , HidrocortisonaRESUMEN
Ageing of the immune system, or immunosenescence, contributes to the morbidity and mortality of the elderly1,2. To define the contribution of immune system ageing to organism ageing, here we selectively deleted Ercc1, which encodes a crucial DNA repair protein3,4, in mouse haematopoietic cells to increase the burden of endogenous DNA damage and thereby senescence5-7 in the immune system only. We show that Vav-iCre+/-;Ercc1-/fl mice were healthy into adulthood, then displayed premature onset of immunosenescence characterized by attrition and senescence of specific immune cell populations and impaired immune function, similar to changes that occur during ageing in wild-type mice8-10. Notably, non-lymphoid organs also showed increased senescence and damage, which suggests that senescent, aged immune cells can promote systemic ageing. The transplantation of splenocytes from Vav-iCre+/-;Ercc1-/fl or aged wild-type mice into young mice induced senescence in trans, whereas the transplantation of young immune cells attenuated senescence. The treatment of Vav-iCre+/-;Ercc1-/fl mice with rapamycin reduced markers of senescence in immune cells and improved immune function11,12. These data demonstrate that an aged, senescent immune system has a causal role in driving systemic ageing and therefore represents a key therapeutic target to extend healthy ageing.
Asunto(s)
Envejecimiento/inmunología , Envejecimiento/fisiología , Sistema Inmunológico/inmunología , Sistema Inmunológico/fisiología , Inmunosenescencia/inmunología , Inmunosenescencia/fisiología , Especificidad de Órganos/inmunología , Especificidad de Órganos/fisiología , Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Animales , Daño del ADN/inmunología , Daño del ADN/fisiología , Reparación del ADN/inmunología , Reparación del ADN/fisiología , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Femenino , Envejecimiento Saludable/inmunología , Envejecimiento Saludable/fisiología , Homeostasis/inmunología , Homeostasis/fisiología , Sistema Inmunológico/efectos de los fármacos , Inmunosenescencia/efectos de los fármacos , Masculino , Ratones , Especificidad de Órganos/efectos de los fármacos , Rejuvenecimiento , Sirolimus/farmacología , Bazo/citología , Bazo/trasplanteRESUMEN
Eosinophilic crystalline pneumonia (ECP), also known as acidophilic macrophage pneumonia (AMP), is a common intrapulmonary lesion that increases in prevalence with age in mice, especially those on a C57BL/6 and 129Sv background. Gross changes may be evident in severe cases as lobar to diffuse red to brown foci throughout the lungs, which fail to collapse. Definitive diagnosis is by histopathology, which shows the accumulation of brightly eosinophilic crystals within macrophages or free within lumens of alveolar spaces and conducting airways. Granulocytes, multinucleated giant cells, and epithelial hyalinosis may also be present in affected areas of the lung. The disease may represent a cause of morbidity and mortality when other disease processes interfere with clearance, leading to the accumulation of crystals and crystal laden macrophages in airways, resulting in dyspnea. Other anatomic locations may be affected by epithelial hyalinosis and/or crystals as part of the syndrome, including respiratory tract, stomach, gall bladder, bile duct, and pancreatic duct.
RESUMEN
Zebrafish are an important laboratory animal model for biomedical research and are increasingly being used for behavioral neuroscience. Tricaine methanesulfonate (MS222) is the standard agent used for euthanasia of zebrafish. However, recent studies of zebrafish behavior suggest that MS222 may be aversive, and clove oil might be a possible alternative. In this study, we compared the effects of MS222 or clove oil as a euthanasia agent in zebrafish on the volume of blood collected and on serum levels of cortisol. Greater amounts of serum could be collected and lower serum levels of cortisol were present in fish euthanized with clove oil compared with equipotent dose of MS222. Euthanasia with clove oil did not blunt the expected elevation of serum cortisol levels elicited by an acute premortem stress. According to our findings, clove oil is a fast-acting agent that minimizes the cortisol response to euthanasia in zebrafish and allows the collection of large volumes of blood postmortem. These results represent a significant refinement in euthanasia methods for zebrafish.
Asunto(s)
Anestésicos/administración & dosificación , Animales de Laboratorio , Aceite de Clavo/administración & dosificación , Eutanasia Animal , Pez Cebra , Aminobenzoatos/administración & dosificación , Animales , Femenino , Hidrocortisona/sangre , Masculino , Pez Cebra/sangreRESUMEN
INTRODUCTION: Research indicates that adolescent nicotine exposure may predispose individuals to use other psychostimulants later in adulthood, offering support for the incentive-sensitization theory of addiction. Preclinical studies testing the incentive-sensitization theory show that repeated nicotine exposure in adolescent rats can lead to an increased sensitivity to the motor stimulant effects of nicotine and other psychostimulants in adulthood. Although previous nicotine exposure can increase sensitivity to stimulant drugs, rats raised in enriched conditions (EC) show, decreased sensitivity to psychostimulant drugs compared to rats raised in isolation conditions (IC). METHODS: We examined whether nicotine sensitization or cross-sensitization to d-amphetamine induced by adolescent nicotine exposure is altered by exposure to environmental enrichment. Adolescent EC and IC male rats received subcutaneous (s.c.) injections of saline or 0.4mg/kg of nicotine once daily for seven days. Thirty-five days following the last nicotine injection EC and IC animals were challenged with saline, nicotine (0.2 or 0.4mg/kg) or d-amphetamine (0.5 or 1.0mg/kg). RESULTS: EC rats failed to show nicotine sensitization at either nicotine dose tested while IC rats showed nicotine sensitization following the 0.4mg/kg nicotine dose. EC rats also failed to show nicotine-induced cross-sensitization to the 0.5mg/kg dose of d-amphetamine while IC rats displayed cross-sensitization. However, EC rats did exhibit nicotine-induced cross-sensitization to the 1.0mg/kg dose of d-amphetamine. CONCLUSION: These findings indicate that environmental enrichment can alter the ability of adolescent nicotine exposure to induce sensitization and cross-sensitization in adulthood and may be used as a protectant factor against adolescent nicotine exposure.