Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 106(12): 122501, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21517310

RESUMEN

The masses of ten proton-rich nuclides, including the N=Z+1 nuclides 85Mo and 87Tc, were measured with the Penning trap mass spectrometer SHIPTRAP. Compared to the Atomic Mass Evaluation 2003 a systematic shift of the mass surface by up to 1.6 MeV is observed causing significant abundance changes of the ashes of astrophysical x-ray bursts. Surprisingly low α separation energies for neutron-deficient Mo and Tc are found, making the formation of a ZrNb cycle in the rp process possible. Such a cycle would impose an upper temperature limit for the synthesis of elements beyond Nb in the rp process.

2.
Phys Rev Lett ; 106(5): 052504, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21405389

RESUMEN

In the search for the nuclide with the largest probability for neutrinoless double-electron capture, we have determined the Q(ϵϵ) value between the ground states of (152)Gd and (152)Sm by Penning-trap mass-ratio measurements. The new Q(ϵϵ) value of 55.70(18) keV results in a half-life of 10(26) yr for a 1 eV neutrino mass. With this smallest half-life among known 0νϵϵ transitions, (152)Gd is a promising candidate for the search for neutrinoless double-electron capture.

3.
Rev Sci Instrum ; 81(2): 02A515, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20192370

RESUMEN

The improvement in the performance of a conventional laser ion source in the laser ion source and trap (LIST) project is presented, which envisages installation of a repeller electrode and a linear Paul trap/ion guide structure. This approach promises highest isobaric purity and optimum temporal and spatial control of the radioactive ion beam produced at an online isotope separator facility. The functionality of the LIST was explored at the offline test separators of University of Mainz (UMz) and ISOLDE/CERN, using the UMz solid state laser system. Ionization efficiency and selectivity as well as time structure and transversal emittance of the produced ion beam was determined. Next step after complete characterization is the construction and installation of the radiation-hard final trap structure and its first online application.

4.
Nature ; 463(7282): 785-8, 2010 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-20148034

RESUMEN

The mass of an atom incorporates all its constituents and their interactions. The difference between the mass of an atom and the sum of its building blocks (the binding energy) is a manifestation of Einstein's famous relation E = mc(2). The binding energy determines the energy available for nuclear reactions and decays (and thus the creation of elements by stellar nucleosynthesis), and holds the key to the fundamental question of how heavy the elements can be. Superheavy elements have been observed in challenging production experiments, but our present knowledge of the binding energy of these nuclides is based only on the detection of their decay products. The reconstruction from extended decay chains introduces uncertainties that render the interpretation difficult. Here we report direct mass measurements of trans-uranium nuclides. Located at the farthest tip of the actinide species on the proton number-neutron number diagram, these nuclides represent the gateway to the predicted island of stability. In particular, we have determined the mass values of (252-254)No (atomic number 102) with the Penning trap mass spectrometer SHIPTRAP. The uncertainties are of the order of 10 keV/c(2) (representing a relative precision of 0.05 p.p.m.), despite minute production rates of less than one atom per second. Our experiments advance direct mass measurements by ten atomic numbers with no loss in accuracy, and provide reliable anchor points en route to the island of stability.

5.
Rev Sci Instrum ; 81(1): 013301, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20113087

RESUMEN

The interest to produce negative osmium ions is manifold in the realm of high-accuracy ion trap experiments: high-resolution nearly Doppler-free laser spectroscopy, antihydrogen formation in its ground state, and contributions to neutrino mass spectrometry. Production of these ions is generally accomplished by sputtering an Os sample with Cs(+) ions at tens of keV. Though this is a well-established method commonly used at accelerators, these kind of sources are quite demanding and tricky to operate. Therefore, the development of a more straightforward and cost effective production scheme will be of benefit for ion trap and other experiments. Such a scheme makes use of desorption and ionization with pulsed lasers and identification of the ions by time-of-flight mass spectrometry. First investigations of negative osmium ion production using a pulsed laser for desorption and ionization and a commercial matrix-assisted laser desorption/ionization time-of-flight system for identification has demonstrated the suitability of this technique. More than 10(3) negative osmium ions per shot were registered after bombarding pure osmium powder with a 5 ns pulse width Nd:yttrium aluminum garnet laser. The limitation in the ion number was imposed by the detection limit of the microchannel plate detector.

6.
Phys Rev Lett ; 101(25): 252502, 2008 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-19113701

RESUMEN

High-precision mass and charge radius measurements on ;{17-22}Ne, including the proton-halo candidate 17Ne, have been performed with Penning trap mass spectrometry and collinear laser spectroscopy. The 17Ne mass uncertainty is improved by factor 50, and the charge radii of ;{17-19}Ne are determined for the first time. The fermionic molecular dynamics model explains the pronounced changes in the ground-state structure. It attributes the large charge radius of 17Ne to an extended proton configuration with an s;{2} component of about 40%. In 18Ne the smaller radius is due to a significantly smaller s;{2} component. The radii increase again for ;{19-22}Ne due to cluster admixtures.

7.
Phys Rev Lett ; 100(7): 072501, 2008 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-18352543

RESUMEN

A high-precision direct Penning trap mass measurement has revealed a 0.5-MeV deviation of the binding energy of (134)Sn from the currently accepted value. The corrected mass assignment of this neutron-rich nuclide restores the neutron-shell gap at N=82, previously considered to be a case of "shell quenching." In fact, the new shell gap value for the short-lived (132)Sn is larger than that of the doubly magic (48)Ca which is stable. The N=82 shell gap has considerable impact on fission recycling during the r process. More generally, the new finding has important consequences for microscopic mean-field theories which systematically deviate from the measured binding energies of closed-shell nuclides.

8.
Phys Rev Lett ; 100(7): 073201, 2008 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-18352547

RESUMEN

Isotope shifts in dielectronic recombination spectra were studied for Li-like (A)Nd(57+) ions with A=142 and A=150. From the displacement of resonance positions energy shifts deltaE(142 150)(2s-2p(1/2))=40.2(3)(6) meV [(stat)(sys)] and deltaE(142 150)(2s-2p(3/2))=42.3(12)(20) meV of 2s-2p(j) transitions were deduced. An evaluation of these values within a full QED treatment yields a change in the mean-square charge radius of (142 150)deltar(2)=-1.36(1)(3) fm(2). The approach is conceptually new and combines the advantage of a simple atomic structure with high sensitivity to nuclear size.

9.
Phys Rev Lett ; 100(1): 012501, 2008 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-18232754

RESUMEN

The masses of six neutron-deficient rare holmium and thulium isotopes close to the proton drip line were determined with the SHIPTRAP Penning trap mass spectrometer. For the first time the masses of the proton-unbound isotopes 144,145Ho and 147,148Tm were directly measured. The proton separation energies were derived from the measured mass values and compared to predictions from mass formulas. The new values of the proton separation energies are used to determine the location of the proton drip line for holmium and thulium more accurately.

10.
Phys Rev Lett ; 101(26): 262501, 2008 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-19437636

RESUMEN

High-precision mass measurements on neutron-rich zinc isotopes (71m,72-81)Zn have been performed with the Penning trap mass spectrometer ISOLTRAP. For the first time, the mass of 81Zn has been experimentally determined. This makes 80Zn the first of the few major waiting points along the path of the astrophysical rapid neutron-capture process where neutron-separation energy and neutron-capture Q-value are determined experimentally. The astrophysical conditions required for this waiting point and its associated abundance signatures to occur in r-process models can now be mapped precisely. The measurements also confirm the robustness of the N=50 shell closure for Z=30.

11.
Phys Rev Lett ; 98(16): 162501, 2007 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-17501414

RESUMEN

Ramsey's method of separated oscillatory fields is applied to the excitation of the cyclotron motion of short-lived ions in a Penning trap to improve the precision of their measured mass values. The theoretical description of the extracted ion-cyclotron-resonance line shape is derived and its correctness demonstrated experimentally by measuring the mass of the short-lived 38Ca nuclide with an uncertainty of 1.1 x 10(-8) using the Penning trap mass spectrometer ISOLTRAP at CERN. The mass of the superallowed beta emitter 38Ca contributes for testing the theoretical corrections of the conserved-vector-current hypothesis of the electroweak interaction. It is shown that the Ramsey method applied to Penning trap mass measurements yields a statistical uncertainty similar to that obtained by the conventional technique but 10 times faster. Thus the technique is a new powerful tool for high-precision mass measurements.

12.
Phys Rev Lett ; 96(25): 253002, 2006 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-16907301

RESUMEN

A possibility for a determination of the fine structure constant in experiments on the bound-electron g-factor is examined. It is found that studying a specific difference of the g-factors of B- and H-like ions of the same spinless isotope in the Pb region to the currently accessible experimental accuracy of 7 x 10(-10) would lead to a determination of the fine structure constant to an accuracy which is better than that of the currently accepted value. Further improvements of the experimental and theoretical accuracy could provide a value of the fine structure constant which is several times more precise than the currently accepted one.

13.
Phys Rev Lett ; 96(3): 033002, 2006 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-16486695

RESUMEN

The nuclear charge radius of 11Li has been determined for the first time by high-precision laser spectroscopy. On-line measurements at TRIUMF-ISAC yielded a 7Li-11Li isotope shift (IS) of 25 101.23(13) MHz for the Doppler-free [FORMULA: SEE TEXT]transition. IS accuracy for all other bound Li isotopes was also improved. Differences from calculated mass-based IS yield values for change in charge radius along the isotope chain. The charge radius decreases monotonically from 6Li to 9Li, and then increases from 2.217(35) to 2.467(37) fm for 11Li. This is compared to various models, and it is found that a combination of halo neutron correlation and intrinsic core excitation best reproduces the experimental results.

14.
Phys Rev Lett ; 95(4): 042501, 2005 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-16090802

RESUMEN

The FRS-ESR facility at GSI provides unique conditions for precision measurements of large areas on the nuclear mass surface in a single experiment. Values for masses of 604 neutron-deficient nuclides (30 < or = Z < or = 92) were obtained with a typical uncertainty of 30 microu. The masses of 114 nuclides were determined for the first time. The odd-even staggering (OES) of nuclear masses was systematically investigated for isotopic chains between the proton shell closures at Z = 50 and Z = 82. The results were compared with predictions of modern nuclear models. The comparison revealed that the measured trend of OES is not reproduced by the theories fitted to masses only. The spectral pairing gaps extracted from models adjusted to both masses, and density related observables of nuclei agree better with the experimental data.

15.
Phys Rev Lett ; 95(5): 052501, 2005 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-16090870

RESUMEN

We report the first measurement of a ratio lambda(beta(b))/lambda(beta(c)) of bound-state ((lambda(beta(b))) and continuum-state (lambda(beta(c))) beta(-)-decay rates for the case of bare 207Tl81+ ions. These ions were produced at the GSI fragment separator FRS by projectile fragmentation of a 208Pb beam. After in-flight separation with the Brho-deltaE-Brho method, they were injected into the experimental storage-ring ESR at an energy of 400.5A MeV, stored, and electron cooled. The number of both the 207Tl81+ ions and their bound-state beta(-)-decay daughters, hydrogen-like 207Pb81+ ions, were measured as a function of storage time by recording their Schottky-noise intensities. The experimental result, lambda(beta(b))/lambda(beta(c)) = 0.188(18), is in very good agreement with the value of 0.171(1) obtained from theory employing spectra of allowed transitions.

16.
Phys Rev Lett ; 93(15): 150801, 2004 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-15524861

RESUMEN

Mass measurements with a relative precision of better than 1.5 x 10(-8) were performed on 22Mg and its reaction partners 21Na and 22Na with the ISOLTRAP Penning trap mass spectrometer at CERN, yielding the mass excesses D(22Mg)=-399.92(27) keV, D(21Na)=-2184.71(21) keV, and D(22Na)=-5181.56(16) keV. The importance of these results is twofold. First, a comparative half-life (Ft value) has been obtained for the superallowed beta decay of 22Mg to further test the conserved-vector-current hypothesis. Second, the resonance energy for the 21Na proton capture reaction has been independently determined, allowing direct comparisons of observable gamma radiation in nova explosions with the yield expected from models.

17.
Phys Rev Lett ; 93(16): 161104, 2004 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-15524973

RESUMEN

The mass of one of the three major waiting points in the astrophysical rp process 72Kr was measured for the first time with the Penning trap mass spectrometer ISOLTRAP. The measurement yielded a relative mass uncertainty of deltam/m=1.2x10(-7) (deltam=8 keV). (73,74)Kr, also needed for astrophysical calculations, were measured with more than 1 order of magnitude improved accuracy. We use the ISOLTRAP masses of 72-74Kr to reanalyze the role of 72Kr (T(1/2)=17.2 s) in the rp process during x-ray bursts and conclude that 72Kr is a strong waiting point delaying the burst duration with at least 80% of its beta-decay half-life.

18.
Phys Rev Lett ; 93(11): 113002, 2004 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-15447335

RESUMEN

The 2s-->3s transition of (6,7,8,9)Li was studied by high-resolution laser spectroscopy using two-photon Doppler-free excitation and resonance-ionization detection. Hyperfine structure splittings and isotope shifts were determined with precision at the 100 kHz level. Combined with recent theoretical work, the changes in the nuclear-charge radii of (8,9)Li were determined. These are now the lightest short-lived isotopes for which the charge radii have been measured. It is found that the charge radii monotonically decrease with increasing neutron number from 6Li to 9Li.

19.
Phys Rev Lett ; 93(7): 072502, 2004 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-15324229

RESUMEN

The decay energy of the superallowed beta decay 74Rb(beta+)74Kr was determined by direct Penning trap mass measurements on both the mother and the daughter nuclide using the time-of-flight resonance technique and was found to be Q=10 416.8(4.5) keV. The exotic nuclide 74Rb, with a half-life of only 65 ms, is the shortest-lived nuclide on which a high-precision mass measurement in a Penning trap has been carried out. Together with existing data for the partial half-life as well as theoretical corrections, the decay energy yields a comparative half-life of Ft=3084(15) s for this decay, in agreement with the mean value for the series of the lighter nuclides from 10C to 54Co. Assuming conserved vector current, this result allows for an experimental determination of the isospin-symmetry-breaking correction deltaC.

20.
Phys Rev Lett ; 92(11): 112501, 2004 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-15089126

RESUMEN

Using resonant laser ionization, beta-decay studies, and for the first time mass measurements, three beta-decaying states have been unambiguously identified in 70Cu. A mass excess of -62 976.1(1.6) keV and a half-life of 44.5(2) s for the (6-) ground state have been determined. The level energies of the (3-) isomer at 101.1(3) keV with T(1/2)=33(2) s and the 1+ isomer at 242.4(3) keV with T(1/2)=6.6(2) s are confirmed by high-precision mass measurements. The low-lying levels of 70Cu populated in the decay of 70Ni and in transfer reactions compare well with large-scale shell-model calculations, and the wave functions appear to be dominated by one proton-one neutron configurations outside the closed Z=28 shell and N=40 subshell. This does not apply to the 1+ state at 1980 keV which exhibits a particular feeding and deexcitation pattern not reproduced by the shell-model calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA