Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Clin Genet ; 104(3): 377-383, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37194472

RESUMEN

We evaluated the diagnostic yield using genome-slice panel reanalysis in the clinical setting using an automated phenotype/gene ranking system. We analyzed whole genome sequencing (WGS) data produced from clinically ordered panels built as bioinformatic slices for 16 clinically diverse, undiagnosed cases referred to the Pediatric Mendelian Genomics Research Center, an NHGRI-funded GREGoR Consortium site. Genome-wide reanalysis was performed using Moon™, a machine-learning-based tool for variant prioritization. In five out of 16 cases, we discovered a potentially clinically significant variant. In four of these cases, the variant was found in a gene not included in the original panel due to phenotypic expansion of a disorder or incomplete initial phenotyping of the patient. In the fifth case, the gene containing the variant was included in the original panel, but being a complex structural rearrangement with intronic breakpoints outside the clinically analyzed regions, it was not initially identified. Automated genome-wide reanalysis of clinical WGS data generated during targeted panels testing yielded a 25% increase in diagnostic findings and a possibly clinically relevant finding in one additional case, underscoring the added value of analyses versus those routinely performed in the clinical setting.


Asunto(s)
Biología Computacional , Genómica , Humanos , Secuenciación Completa del Genoma , Fenotipo , Intrones
2.
J Cachexia Sarcopenia Muscle ; 13(2): 1385-1402, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35194965

RESUMEN

BACKGROUND: The cause of the motor neuron (MN) death that drives terminal pathology in amyotrophic lateral sclerosis (ALS) remains unknown, and it is thought that the cellular environment of the MN may play a key role in MN survival. Several lines of evidence implicate vesicles in ALS, including that extracellular vesicles may carry toxic elements from astrocytes towards MNs, and that pathological proteins have been identified in circulating extracellular vesicles of sporadic ALS patients. Because MN degeneration at the neuromuscular junction is a feature of ALS, and muscle is a vesicle-secretory tissue, we hypothesized that muscle vesicles may be involved in ALS pathology. METHODS: Sporadic ALS patients were confirmed to be ALS according to El Escorial criteria and were genotyped to test for classic gene mutations associated with ALS, and physical function was assessed using the ALSFRS-R score. Muscle biopsies of either mildly affected deltoids of ALS patients (n = 27) or deltoids of aged-matched healthy subjects (n = 30) were used for extraction of muscle stem cells, to perform immunohistology, or for electron microscopy. Muscle stem cells were characterized by immunostaining, RT-qPCR, and transcriptomic analysis. Secreted muscle vesicles were characterized by proteomic analysis, Western blot, NanoSight, and electron microscopy. The effects of muscle vesicles isolated from the culture medium of ALS and healthy myotubes were tested on healthy human-derived iPSC MNs and on healthy human myotubes, with untreated cells used as controls. RESULTS: An accumulation of multivesicular bodies was observed in muscle biopsies of sporadic ALS patients by immunostaining and electron microscopy. Study of muscle biopsies and biopsy-derived denervation-naïve differentiated muscle stem cells (myotubes) revealed a consistent disease signature in ALS myotubes, including intracellular accumulation of exosome-like vesicles and disruption of RNA-processing. Compared with vesicles from healthy control myotubes, when administered to healthy MNs the vesicles of ALS myotubes induced shortened, less branched neurites, cell death, and disrupted localization of RNA and RNA-processing proteins. The RNA-processing protein FUS and a majority of its binding partners were present in ALS muscle vesicles, and toxicity was dependent on the expression level of FUS in recipient cells. Toxicity to recipient MNs was abolished by anti-CD63 immuno-blocking of vesicle uptake. CONCLUSIONS: ALS muscle vesicles are shown to be toxic to MNs, which establishes the skeletal muscle as a potential source of vesicle-mediated toxicity in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Anciano , Esclerosis Amiotrófica Lateral/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Neuronas Motoras/metabolismo , Células Musculares/metabolismo , Proteómica
3.
Front Immunol ; 12: 710608, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504493

RESUMEN

Aging adversely affects inflammatory processes in the brain, which has important implications in the progression of neurodegenerative disease. Following traumatic brain injury (TBI), aged animals exhibit worsened neurological function and exacerbated microglial-associated neuroinflammation. Type I Interferons (IFN-I) contribute to the development of TBI neuropathology. Further, the Cyclic GMP-AMP Synthase (cGAS) and Stimulator of Interferon Genes (STING) pathway, a key inducer of IFN-I responses, has been implicated in neuroinflammatory activity in several age-related neurodegenerative diseases. Here, we set out to investigate the effects of TBI on cGAS/STING activation, IFN-I signaling and neuroinflammation in young and aged C57Bl/6 male mice. Using a controlled cortical impact model, we evaluated transcriptomic changes in the injured cortex at 24 hours post-injury, and confirmed activation of key neuroinflammatory pathways in biochemical studies. TBI induced changes were highly enriched for transcripts that were involved in inflammatory responses to stress and host defense. Deeper analysis revealed that TBI increased expression of IFN-I related genes (e.g. Ifnb1, Irf7, Ifi204, Isg15) and IFN-I signaling in the injured cortex of aged compared to young mice. There was also a significant age-related increase in the activation of the DNA-recognition pathway, cGAS, which is a key mechanism to propagate IFN-I responses. Finally, enhanced IFN-I signaling in the aged TBI brain was confirmed by increased phosphorylation of STAT1, an important IFN-I effector molecule. This age-related activation of cGAS and IFN-I signaling may prove to be a mechanistic link between microglial-associated neuroinflammation and neurodegeneration in the aged TBI brain.


Asunto(s)
Envejecimiento/inmunología , Lesiones Traumáticas del Encéfalo/inmunología , Interferón Tipo I/fisiología , Nucleotidiltransferasas/metabolismo , Envejecimiento/metabolismo , Animales , Activación Enzimática , Interferón Tipo I/genética , Masculino , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Microglía/fisiología , Enfermedades Neurodegenerativas/etiología , Enfermedades Neuroinflamatorias/etiología , Transducción de Señal/fisiología
4.
iScience ; 23(12): 101766, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33294779

RESUMEN

Acute hypoxia (HX) causes extensive cellular damage in the developing human cerebral cortex. We found increased expression of activated-EGFR in affected cortical areas of neonates with HX and investigated its functional role in the piglet, which displays a highly evolved, gyrencephalic brain, with a human-like maturation pattern. In the piglet, HX-induced activation of EGFR and Ca2+/calmodulin kinase IV (CaMKIV) caused cell death and pathological alterations in neurons and glia. EGFR blockade inhibited CaMKIV activation, attenuated neuronal loss, increased oligodendrocyte proliferation, and reversed HX-induced astrogliosis. We performed for the first time high-throughput transcriptomic analysis of the piglet cortex to define molecular responses to HX and to uncover genes specifically involved in EGFR signaling in piglet and human brain injury. Our results indicate that specific molecular responses modulated by EGFR may be targeted as a therapeutic strategy for HX injury in the neonatal brain.

5.
Genome Res ; 30(6): 885-897, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32660935

RESUMEN

RNA-seq is widely used for studying gene expression, but commonly used sequencing platforms produce short reads that only span up to two exon junctions per read. This makes it difficult to accurately determine the composition and phasing of exons within transcripts. Although long-read sequencing improves this issue, it is not amenable to precise quantitation, which limits its utility for differential expression studies. We used long-read isoform sequencing combined with a novel analysis approach to compare alternative splicing of large, repetitive structural genes in muscles. Analysis of muscle structural genes that produce medium (Nrap: 5 kb), large (Neb: 22 kb), and very large (Ttn: 106 kb) transcripts in cardiac muscle, and fast and slow skeletal muscles identified unannotated exons for each of these ubiquitous muscle genes. This also identified differential exon usage and phasing for these genes between the different muscle types. By mapping the in-phase transcript structures to known annotations, we also identified and quantified previously unannotated transcripts. Results were confirmed by endpoint PCR and Sanger sequencing, which revealed muscle-type-specific differential expression of these novel transcripts. The improved transcript identification and quantification shown by our approach removes previous impediments to studies aimed at quantitative differential expression of ultralong transcripts.


Asunto(s)
Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Mensajero , Análisis de Secuencia de ARN , Transcriptoma , Empalme Alternativo , Biología Computacional/métodos , Exones , Perfilación de la Expresión Génica/métodos , Humanos , Anotación de Secuencia Molecular , Especificidad de Órganos/genética , Secuencias Repetitivas de Ácidos Nucleicos
6.
Clin Cancer Res ; 26(5): 1152-1161, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31615935

RESUMEN

PURPOSE: Immunotherapy promises unprecedented benefits to patients with cancer. However, the majority of cancer types, including high-risk neuroblastoma, remain immunologically unresponsive. High-intensity focused ultrasound (HIFU) is a noninvasive technique that can mechanically fractionate tumors, transforming immunologically "cold" tumors into responsive "hot" tumors. EXPERIMENTAL DESIGN: We treated <2% of tumor volume in previously unresponsive, large, refractory murine neuroblastoma tumors with mechanical HIFU and assessed systemic immune response using flow cytometry, ELISA, and gene sequencing. In addition, we combined this treatment with αCTLA-4 and αPD-L1 to study its effect on the immune response and long-term survival. RESULTS: Combining HIFU with αCTLA-4 and αPD-L1 significantly enhances antitumor response, improving survival from 0% to 62.5%. HIFU alone causes upregulation of splenic and lymph node NK cells and circulating IL2, IFNγ, and DAMPs, whereas immune regulators like CD4+Foxp3+, IL10, and VEGF-A are significantly reduced. HIFU combined with checkpoint inhibitors induced significant increases in intratumoral CD4+, CD8α+, and CD8α+CD11c+ cells, CD11c+ in regional lymph nodes, and decrease in circulating IL10 compared with untreated group. We also report significant abscopal effect following unilateral treatment of mice with large, established bilateral tumors using HIFU and checkpoint inhibitors compared with tumors treated with HIFU or checkpoint inhibitors alone (61.1% survival, P < 0.0001). This combination treatment significantly also induces CD4+CD44+hiCD62L+low and CD8α+CD44+hiCD62L+low population and is adoptively transferable, imparting immunity, slowing subsequent de novo tumor engraftment. CONCLUSIONS: Mechanical fractionation of tumors using HIFU can effectively induce immune sensitization in a previously unresponsive murine neuroblastoma model and promises a novel yet efficacious immunoadjuvant modality to overcome therapeutic resistance.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Antígeno CTLA-4/antagonistas & inhibidores , Resistencia a Antineoplásicos , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Inmunidad Celular , Neuroblastoma/terapia , Animales , Línea Celular Tumoral , Proliferación Celular , Terapia Combinada , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos A , Neuroblastoma/inmunología
7.
Inflamm Res ; 68(11): 969-980, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31446438

RESUMEN

OBJECTIVE AND DESIGN: The objective of this study was to assess the effect of vamorolone, a first-in-class dissociative steroidal compound, to inhibit inflammation when administered after disease onset in the murine collagen antibody-induced arthritis model of arthritis. ANIMALS: 84 DBA1/J mice were used in this study (n = 12 per treatment group). TREATMENT: Vamorolone or prednisolone was administered orally after disease onset for a duration of 7 days. METHODS: Disease score and bone erosion were assessed using previously described scoring systems. Cytokines were measured in joints via immunoassay, and joint cathepsin B activity (marker of inflammation) was assessed using optical imaging of joints on live mice. RESULTS: We found that vamorolone treatment led to a reduction of several disease parameters including disease score, joint inflammation, and the presence of pro-inflammatory mediators to a degree similar of that observed with prednisolone treatment. More importantly, histopathological analysis of affected joints showed that vamorolone treatment significantly reduced the degree of bone erosion while this bone-sparing property was not observed with prednisolone treatment at any of the tested doses. CONCLUSIONS: While many intervention regimens in other studies are administered prior to disease onset in animal models, the current study involves delivery of the potential therapeutic after disease onset. Based on the findings, vamorolone may offer an efficacious, yet safer alternative to conventional steroidal compounds in the treatment of rheumatoid arthritis and other inflammatory diseases.


Asunto(s)
Antiinflamatorios/uso terapéutico , Artritis Experimental/tratamiento farmacológico , Pregnadienodioles/uso terapéutico , Animales , Anticuerpos Monoclonales/inmunología , Artritis Experimental/inmunología , Artritis Experimental/patología , Colágeno Tipo II/inmunología , Citocinas/inmunología , Articulaciones/efectos de los fármacos , Articulaciones/inmunología , Articulaciones/patología , Lipopolisacáridos , Masculino , Ratones Endogámicos DBA
8.
Autism Res ; 12(2): 200-211, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30556326

RESUMEN

Amygdala dysfunction has been implicated in numerous neurodevelopmental disorders, including autism spectrum disorder (ASD). Previous studies in mice and humans, respectively, have linked Pac1r/PAC1R function to social behavior and PTSD-susceptibility. Based on this connection to social and emotional processing and the central role played by the amygdala in ASD, we examined a putative role for PAC1R in social deficits in ASD and determined the pattern of gene expression in the developing mouse and human amygdala. We reveal that Pac1r/PAC1R is expressed in both mouse and human amygdala from mid-neurogenesis through early postnatal stages, critical time points when altered brain trajectories are hypothesized to unfold in ASD. We further find that parents of autistic children carrying a previously identified PTSD-risk genotype (CC) report greater reciprocal social deficits compared to those carrying the non-risk GC genotype. Additionally, by exploring resting-state functional connectivity differences in a subsample of the larger behavioral sample, we find higher functional connectivity between the amygdala and right middle temporal gyrus in individuals with the CC risk genotype. Thus, using multimodal approaches, our data reveal that the amygdala-expressed PAC1R gene may be linked to severity of ASD social phenotype and possible alterations in brain connectivity, therefore potentially acting as a modifier of amygdala-related phenotypes. Autism Res 2019, 12: 200-211 © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: In this multimodal study across mouse and human, we examined expression patterns of Pac1r/PAC1R, a gene implicated in social behavior, and further explored whether a previously identified human PTSD-linked mutation in PAC1R can predict brain connectivity and social deficits in ASD. We find that PAC1R is highly expressed in the both the mouse and human amygdala. Furthermore, our human data suggest that PAC1R genotype is linked to severity of social deficits and functional amygdala connectivity in ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Encéfalo/diagnóstico por imagen , Genotipo , Imagen por Resonancia Magnética/métodos , Fenotipo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/genética , Adolescente , Animales , Trastorno del Espectro Autista/fisiopatología , Encéfalo/fisiopatología , Mapeo Encefálico/métodos , Niño , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
9.
Neuron ; 96(2): 387-401.e6, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-29024662

RESUMEN

Because molecular mechanisms underlying refractory focal epilepsy are poorly defined, we performed transcriptome analysis on human epileptogenic tissue. Compared with controls, expression of Circadian Locomotor Output Cycles Kaput (CLOCK) is decreased in epileptogenic tissue. To define the function of CLOCK, we generated and tested the Emx-Cre; Clockflox/flox and PV-Cre; Clockflox/flox mouse lines with targeted deletions of the Clock gene in excitatory and parvalbumin (PV)-expressing inhibitory neurons, respectively. The Emx-Cre; Clockflox/flox mouse line alone has decreased seizure thresholds, but no laminar or dendritic defects in the cortex. However, excitatory neurons from the Emx-Cre; Clockflox/flox mouse have spontaneous epileptiform discharges. Both neurons from Emx-Cre; Clockflox/flox mouse and human epileptogenic tissue exhibit decreased spontaneous inhibitory postsynaptic currents. Finally, video-EEG of Emx-Cre; Clockflox/flox mice reveals epileptiform discharges during sleep and also seizures arising from sleep. Altogether, these data show that disruption of CLOCK alters cortical circuits and may lead to generation of focal epilepsy.


Asunto(s)
Encéfalo/metabolismo , Proteínas CLOCK/deficiencia , Proteínas CLOCK/genética , Epilepsias Parciales/genética , Epilepsias Parciales/metabolismo , Red Nerviosa/metabolismo , Animales , Encéfalo/patología , Células Cultivadas , Epilepsias Parciales/patología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/patología , Estudios Prospectivos
10.
Pediatr Res ; 82(1): 164-172, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28388601

RESUMEN

BackgroundPreterm infants are frequently exposed to intermittent hypoxia (IH) associated with apnea and periodic breathing that may result in inflammation and brain injury that later manifests as cognitive and executive function deficits. We used a rodent model to determine whether early postnatal exposure to IH would result in inflammation and brain injury.MethodsRat pups were exposed to IH from P2 to P12. Control animals were exposed to room air. Cytokines were analyzed in plasma and brain tissue at P13 and P18. At P20-P22, diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS) were performed.ResultsPups exposed to IH had increased plasma Gro/CXCL1 and cerebellar IFN-γ and IL-1ß at P13, and brainstem enolase at P18. DTI showed a decrease in FA and AD in the corpus callosum (CC) and cingulate gyrus, and an increase in RD in the CC. MRS revealed decreases in NAA/Cho, Cr, Tau/Cr, and Gly/Cr; increases in TCho and GPC in the brainstem; and decreases in NAA/Cho in the hippocampus.ConclusionsWe conclude that early postnatal exposure to IH, similar in magnitude to that experienced in human preterm infants, is associated with evidence for proinflammatory changes, decreases in white matter integrity, and metabolic changes consistent with hypoxia.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Hipoxia/fisiopatología , Sustancia Blanca/patología , Animales , Lesiones Encefálicas/metabolismo , Trastornos del Conocimiento , Imagen de Difusión Tensora , Femenino , Inflamación , Imagen por Resonancia Magnética , Ratas , Ratas Sprague-Dawley
11.
Am J Physiol Renal Physiol ; 312(6): F982-F991, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28077372

RESUMEN

MicroRNAs (miRNAs) are noncoding RNAs that regulate posttranscriptional gene expression. In this study we characterized the circulating and urinary miRNA pattern associated with reduced glomerular filtration rate, using Affymetrix GeneChip miR 4.0 in 28 patients with chronic kidney disease (CKD). Top miRNA discoveries from the human studies were validated in an Alb/TGFß mouse model of CKD, and in rat renal proximal tubular cells (NRK52E) exposed to TGFß1. Plasma and urinary levels of procollagen III N-terminal propeptide and collagen IV were elevated in patients with decreased estimated glomerular filtration rate (eGFR). Expression of 384 urinary and 266 circulatory miRNAs were significantly different between CKD patients with eGFR ≥30 vs. <30 ml·min-1·1.73 m-2 Pathway analysis mapped multiple miRNAs to TGFß signaling-related mRNA targets. Specifically, Let-7a was significantly downregulated, and miR-130a was significantly upregulated, in urine of patients with eGFR <30; miR-1825 and miR-1281 were upregulated in both urine and plasma of patients with decreased eGFR; and miR-423 was significantly downregulated in plasma of patients with decreased eGFR. miRNA expression in urine and plasma of Alb/TGFß mice generally resembled and confirmed most, although not all, of the observations from the human studies. In response to TGFß1 exposure, rat renal proximal tubular cells overexpressed miR-1825 and downregulated miR-423. Thus, miRNA are associated with kidney fibrosis, and specific urinary and plasma miRNA profile may have diagnostic and prognostic utility in CKD.


Asunto(s)
Riñón/metabolismo , MicroARNs/genética , Insuficiencia Renal Crónica/genética , Transcriptoma , Adulto , Anciano , Albúminas/genética , Animales , Línea Celular , Modelos Animales de Enfermedad , Femenino , Fibrosis , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Tasa de Filtración Glomerular , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Riñón/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , MicroARNs/sangre , MicroARNs/orina , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Ratas , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/fisiopatología , Insuficiencia Renal Crónica/orina , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta1/farmacología
12.
Pediatr Res ; 79(5): 742-7, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26717001

RESUMEN

BACKGROUND: Cytokines have been proposed as mediators of neonatal brain injury via neuroinflammatory pathways triggered by hypoxia-ischemia. Limited data are available on cytokine profiles in larger cohorts of newborns with hypoxic-ischemic encephalopathy (HIE) undergoing therapeutic hypothermia (TH). METHODS: Serum cytokines interleukin (IL)-1ß, IL-2, IL-4, IL-6, IL-8, IL-10, IL-13, tumor necrosis factor-α, and interferon-γ were measured in newborns with HIE at 24 and 72 h of TH. Differences between infants with favorable (survivors with mild/no magnetic resonance imaging (MRI) injury) vs. adverse outcome (death or moderate/severe MRI injury) were compared using mixed models to adjust for covariates. RESULTS: Data from 36 term newborns with HIE (favorable outcome: n = 20, adverse outcome: n = 16) were evaluated. Cytokines IL-1ß, IL-2, IL-6, IL-8, IL-10, and IL-13 were elevated in the adverse relative to favorable outcome group at 24 h. IL-6 remained significantly elevated in the adverse outcome group at 72 h. IL-6 and IL-10 remained significantly associated with outcome group after controlling for covariates. CONCLUSION: Inflammatory cytokines are elevated in HIE newborns with brain injury by MRI. In particular, IL-6 and IL-10 were associated with adverse outcomes after controlling for baseline characteristics and severity of presentation. These data suggest that cytokine response may identify infants in need of additional neuroprotective interventions.


Asunto(s)
Lesiones Encefálicas/sangre , Citocinas/metabolismo , Hipotermia Inducida , Hipoxia-Isquemia Encefálica/sangre , Hipoxia-Isquemia Encefálica/terapia , Estudios de Cohortes , Citocinas/sangre , Femenino , Edad Gestacional , Humanos , Recién Nacido , Inflamación , Imagen por Resonancia Magnética , Masculino , Factores de Tiempo
13.
Tissue Eng Part A ; 22(1-2): 75-82, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26573748

RESUMEN

The development of a tissue-engineered vascular graft (TEVG) holds great promise for advancing the field of cardiac surgery. Despite the successful translation of this technology, previous reports identify the primary mode of graft failure as stenosis secondary to intimal hyperplasia. MicroRNAs (miRNAs) regulate gene expression by interfering with mRNA function and recent research has suggested miRNA as a potential therapeutic target. The role of miRNAs in TEVGs during neotissue formation is currently unknown. In this study, we investigated if miRNAs regulate the inhibition of graft stenosis. Biodegradable PGA-P(LA/CL) scaffolds were implanted as inferior vena cava interposition grafts in a murine model (n = 14). Mice were sacrificed 14 days following implantation and TEVGs were harvested for histological analysis and miRNA profiling using Affymetrix miRNA arrays. Graft diameters were measured histologically, and the largest grafts (patent group) and smallest grafts (stenosed group) were profiled (n = 4 for each group). Cell population in each graft was analyzed with immunohistochemistry using antismooth muscle actin (SMA) and antimacrophage (F4/80) antibodies. The graft diameter was significantly greater in the patent group (0.63 ± 0.06 mm) than in the stenosed group (0.17 ± 0.06 mm) (p < 0.01). Cell proliferation was significantly greater in the stenosed grafts than in patent grafts (p < 0.01: SMA [187 ± 11 vs. 77 ± 8 cells] vs. p = 0.025: F4/80 [245 ± 23 vs. 187 ± 11 cells]). MiRNA array of 1416 genes showed that in stenosed grafts, mir-451, mir-338, and mir-466 were downregulated and mir-154 was upregulated. Mir-451 exhibited the greatest difference in expression between stenosed and patent grafts by -3.1-fold. Significant negative correlation was found between the expression of mir-451 and cell proliferation (SMA: r = -0.86, p = 0.003; F4/80: r = -0.89, p = 0.001). Our data, along with previous evidence that mir-451 regulates tumor suppressor genes, suggest that downregulation of mir-451 promotes acute proliferation of macrophages and smooth muscle cells, thereby inducing TEVG stenosis. Adequate expression of mir-451 may be critical for improving TEVG patency.


Asunto(s)
Prótesis Vascular , Regulación de la Expresión Génica , Oclusión de Injerto Vascular/metabolismo , MicroARNs/biosíntesis , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Modelos Animales de Enfermedad , Oclusión de Injerto Vascular/patología , Ratones , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología
14.
Neuron ; 86(2): 403-16, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25864637

RESUMEN

The hypothalamus integrates information required for the production of a variety of innate behaviors such as feeding, mating, aggression, and predator avoidance. Despite an extensive knowledge of hypothalamic function, how embryonic genetic programs specify circuits that regulate these behaviors remains unknown. Here, we find that in the hypothalamus the developmentally regulated homeodomain-containing transcription factor Dbx1 is required for the generation of specific subclasses of neurons within the lateral hypothalamic area/zona incerta (LH) and the arcuate (Arc) nucleus. Consistent with this specific developmental role, Dbx1 hypothalamic-specific conditional-knockout mice display attenuated responses to predator odor and feeding stressors but do not display deficits in other innate behaviors such as mating or conspecific aggression. Thus, activity of a single developmentally regulated gene, Dbx1, is a shared requirement for the specification of hypothalamic nuclei governing a subset of innate behaviors. VIDEO ABSTRACT.


Asunto(s)
Conducta Animal/fisiología , Proteínas de Homeodominio/genética , Hipotálamo/embriología , Hipotálamo/fisiología , Instinto , Animales , Tipificación del Cuerpo/genética , Conducta Alimentaria/fisiología , Femenino , Expresión Génica , Proteínas de Homeodominio/metabolismo , Hipotálamo/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Neuropéptidos/metabolismo , Orexinas
15.
Eur J Clin Invest ; 45(4): 394-404, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25682967

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are noncoding RNA molecules that play important roles in the pathogenesis of various kidney diseases. We investigated whether patients with minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS) have distinct circulating and urinary miRNA expression profiles that could lead to potential development of noninvasive biomarkers of the disease. MATERIALS AND METHODS: Exosome miRNAs were extracted from plasma and urine samples of patients with primary FSGS (n = 16) or MCD (n = 5) and healthy controls (n = 5). Differences in miRNA abundance were examined using Affymetrix GeneChip miRNA 3.0 arrays. QRT-PCR was used to validate the findings from the array. RESULTS: Comparison analysis of FSGS versus MCD revealed 126 and 155 differentially expressed miRNAs in plasma and in urine, respectively. Only 38 of these miRNAs were previously cited, whereas the remaining miRNAs have not been described. Comparison analysis showed that a significant number of miRNAs were downregulated in both plasma and urine samples of patients with FSGS compared to those with MCD. Plasma levels of miR-30b, miR-30c, miR-34b, miR-34c and miR-342 and urine levels of mir-1225-5p were upregulated in patients with MCD compared to patients with FSGS and controls (P < 0.001). Urinary levels of mir-1915 and miR-663 were downregulated in patients with FSGS compared to MCD and controls (P < 0.001), whereas the urinary levels of miR-155 were upregulated in patients with FSGS when compared to patients with MCD and controls (P < 0.005). CONCLUSIONS: Patients with FSGS and MCD have a unique circulating and urinary miRNA profile. The diagnostic and prognostic potential of miRNAs in FSGS and MCD warrants further studies.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria/genética , MicroARNs/genética , Nefrosis Lipoidea/genética , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Glomeruloesclerosis Focal y Segmentaria/sangre , Glomeruloesclerosis Focal y Segmentaria/orina , Humanos , Lactante , Masculino , MicroARNs/sangre , MicroARNs/orina , Persona de Mediana Edad , Nefrosis Lipoidea/sangre , Nefrosis Lipoidea/orina , Análisis de Secuencia por Matrices de Oligonucleótidos , Proyectos Piloto , Adulto Joven
16.
Cell Mol Neurobiol ; 35(3): 377-387, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25392236

RESUMEN

Multiple sclerosis is a chronic disease of the central nervous system characterized by an autoimmune inflammatory reaction that leads to axonal demyelination and tissue damage. Glucocorticoids, such as prednisolone, are effective in the treatment of multiple sclerosis in large part due to their ability to inhibit pro-inflammatory pathways (e.g., NFκB). However, despite their effectiveness, long-term treatment is limited by adverse side effects. VBP15 is a recently described compound synthesized based on the lazeroid steroidal backbone that shows activity in acute and chronic inflammatory conditions, yet displays a much-reduced side effect profile compared to traditional glucocorticoids. The purpose of this study was to determine the effectiveness of VBP15 in inhibiting inflammation and disease progression in experimental autoimmune encephalomyelitis (EAE), a widely used mouse model of multiple sclerosis. Our data show that VBP15 is effective at reducing both disease onset and severity. In parallel studies, we observed that VBP15 was able to inhibit the production of NFκB-regulated pro-inflammatory transcripts in human macrophages. Furthermore, treatment with prednisolone-but not VBP15-increased expression of genes associated with bone loss and muscle atrophy, suggesting lack of side effects of VBP15. These findings suggest that VBP15 may represent a potentially safer alternative to traditional glucocorticoids in the treatment of multiple sclerosis and other inflammatory diseases.


Asunto(s)
Antiinflamatorios/uso terapéutico , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Pregnadienodioles/uso terapéutico , Índice de Severidad de la Enfermedad , Animales , Antiinflamatorios/farmacología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/efectos de los fármacos , Monocitos/patología , Pregnadienodioles/farmacología , Embarazo , Resultado del Tratamiento
17.
Clin Transl Sci ; 8(1): 8-16, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25388089

RESUMEN

Dominant mutations in the valosin-containing protein (VCP) gene cause inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia, which is characterized by progressive muscle weakness, dysfunction in bone remodeling, and frontotemporal dementia. More recently, VCP has been linked to 2% of familial amyotrophic lateral sclerosis cases. VCP plays a significant role in a plethora of cellular functions including membrane fusion, transcription activation, nuclear envelope reconstruction, postmitotic organelle reassembly, and cell cycle control. To elucidate the pathological mechanisms underlying the VCP disease progression, we have previously generated a VCP(R155H/+) mouse model with the R155H mutation. Histological analyses of mutant muscle showed vacuolization of myofibrils, centrally located nuclei, and disorganized muscle fibers. Global expression profiling of VCP(R155H/+) mice using gene annotations by DAVID identified key dysregulated signaling pathways including genes involved in the physiological system development and function, diseases and disorders, and molecular and cellular functions. There were a total of 212 significantly dysregulated genes, several of which are involved in the regulation of proteasomal function and NF-κB signaling cascade. Findings of the gene expression study were validated by using quantitative reverse transcriptase polymerase chain reaction analyses to test genes involved in various signaling cascades. This investigation reveals the importance of the VCP(R155H/+) mouse model in the understanding of cellular and molecular mechanisms causing VCP-associated neurodegenerative diseases and in the discovery of novel therapeutic advancements and strategies for patients suffering with these debilitating disorders.


Asunto(s)
Adenosina Trifosfatasas/genética , Sustitución de Aminoácidos , Proteínas de Ciclo Celular/genética , Perfilación de la Expresión Génica , Técnicas de Sustitución del Gen , Degeneración Nerviosa/genética , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Ratones , Músculos/patología , Degeneración Nerviosa/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Proteína que Contiene Valosina
18.
Top Spinal Cord Inj Rehabil ; 20(2): 147-57, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25477737

RESUMEN

BACKGROUND: Activity-based therapy (ABT) focuses on regaining motor and sensory function below the level of the lesion in persons with a spinal cord injury (SCI). This is accomplished through repetitive training of specific motor tasks. Research has shown that ABT may increase neuroplasticity in the rat and human spinal cord. OBJECTIVE: The primary aim of this study was to examine acute alterations in neuroplasticity-related proteins during ABT in persons with SCI. METHODS: Volunteers were current participants in an ABT program and consisted of 12 men and 3 women (age, 31.8 ± 10.9 years) with chronic SCI (injury duration, 63.9 ± 54.4 months). A single 2-hour bout of ABT consisted of standing load bearing, body weight-supported treadmill training, whole body vibration, and functional electrical stimulation. Blood samples were obtained at baseline and immediately after completion of each modality to determine serum levels of brain-derived neurotrophic factor (BDNF), prolactin, and cortisol. RESULTS: One-way analysis of variance (ANOVA) with repeated measures was used to examine differences in proteins over time. Results revealed baseline levels of BDNF (2.37 ± 1.41 ng/mL) that were lower than previous research has demonstrated in persons with SCI. No change in BDNF or cortisol was found, although prolactin was significantly reduced in response to ABT. CONCLUSION: Despite the length of the bout, acute changes in BDNF were not observed. Whether different intensities or modalities of ABT may promote acute increases in serum BDNF in individuals with SCI remains to be determined and further study is merited.

19.
Clin Transl Sci ; 6(5): 347-55, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24127921

RESUMEN

Prader-Willi syndrome (PWS) is a genetic disorder caused by deficiency of imprinted gene expression from the paternal chromosome 15q11-15q13 and clinically characterized by neonatal hypotonia, short stature, cognitive impairment, hypogonadism, hyperphagia, morbid obesity, and diabetes. Previous clinical studies suggest that a defect in energy metabolism may be involved in the pathogenesis of PWS. We focused our attention on the genes associated with energy metabolism and found that there were 95 and 66 mitochondrial genes differentially expressed in PWS muscle and brain, respectively. Assessment of enzyme activities of mitochondrial oxidative phosphorylation complexes in the brain, heart, liver, and muscle were assessed. We found the enzyme activities of the cardiac mitochondrial complexes II+‫III were up-regulated in the PWS imprinting center deletion mice compared to the wild-type littermates. These studies suggest that differential gene expression, especially of the mitochondrial genes may contribute to the pathophysiology of PWS.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Impresión Genómica/genética , Mitocondrias/genética , Mitocondrias/patología , Síndrome de Prader-Willi/genética , Eliminación de Secuencia/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Redes Reguladoras de Genes/genética , Genoma/genética , Ratones , Mitocondrias/ultraestructura , Músculos/metabolismo , Músculos/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados
20.
Brain Behav ; 2(5): 563-75, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23139902

RESUMEN

Galectins are pleiotropic carbohydrate-binding lectins involved in inflammation, growth/differentiation, and tissue remodeling. The functional role of galectins in amyotrophic lateral sclerosis (ALS) is unknown. Expression studies revealed increases in galectin-1 mRNA and protein in spinal cords from SOD1(G93A) mice, and in galectin-3 and -9 mRNAs and proteins in spinal cords of both SOD1(G93A) mice and sporadic ALS patients. As the increase in galectin-3 appeared in early presymptomatic stages and increased progressively through to end stage of disease in the mouse, it was selected for additional study, where it was found to be mainly expressed by microglia. Galectin-3 antagonists are not selective and do not readily cross the blood-brain barrier; therefore, we generated SOD1(G93A)/Gal-3(-/-) transgenic mice to evaluate galectin-3 deletion in a widely used mouse model of ALS. Disease progression, neurological symptoms, survival, and inflammation were assessed to determine the effect of galectin-3 deletion on the SOD1(G93A) disease phenotype. Galectin-3 deletion did not change disease onset, but resulted in more rapid progression through functionally defined disease stages, more severely impaired neurological symptoms at all stages of disease, and expiration, on average, 25 days earlier than SOD1(G93A)/Gal-3(+/+) cohorts. In addition, microglial staining, as well as TNF-α, and oxidative injury were increased in SOD1(G93A)/Gal-3(-/-) mice compared with SOD1(G93A)/Gal-3(+/+) cohorts. These data support an important functional role for microglial galectin-3 in neuroinflammation during chronic neurodegenerative disease. We suggest that elevations in galectin-3 by microglia as disease progresses may represent a protective, anti-inflammatory innate immune response to chronic motor neuron degeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA