Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
BMC Biol ; 22(1): 79, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600528

RESUMEN

BACKGROUND: Throughout its nearly four-billion-year history, life has undergone evolutionary transitions in which simpler subunits have become integrated to form a more complex whole. Many of these transitions opened the door to innovations that resulted in increased biodiversity and/or organismal efficiency. The evolution of multicellularity from unicellular forms represents one such transition, one that paved the way for cellular differentiation, including differentiation of male and female gametes. A useful model for studying the evolution of multicellularity and cellular differentiation is the volvocine algae, a clade of freshwater green algae whose members range from unicellular to colonial, from undifferentiated to completely differentiated, and whose gamete types can be isogamous, anisogamous, or oogamous. To better understand how multicellularity, differentiation, and gametes evolved in this group, we used comparative genomics and fossil data to establish a geologically calibrated roadmap of when these innovations occurred. RESULTS: Our ancestral-state reconstructions, show that multicellularity arose independently twice in the volvocine algae. Our chronograms indicate multicellularity evolved during the Carboniferous-Triassic periods in Goniaceae + Volvocaceae, and possibly as early as the Cretaceous in Tetrabaenaceae. Using divergence time estimates we inferred when, and in what order, specific developmental changes occurred that led to differentiated multicellularity and oogamy. We find that in the volvocine algae the temporal sequence of developmental changes leading to differentiated multicellularity is much as proposed by David Kirk, and that multicellularity is correlated with the acquisition of anisogamy and oogamy. Lastly, morphological, molecular, and divergence time data suggest the possibility of cryptic species in Tetrabaenaceae. CONCLUSIONS: Large molecular datasets and robust phylogenetic methods are bringing the evolutionary history of the volvocine algae more sharply into focus. Mounting evidence suggests that extant species in this group are the result of two independent origins of multicellularity and multiple independent origins of cell differentiation. Also, the origin of the Tetrabaenaceae-Goniaceae-Volvocaceae clade may be much older than previously thought. Finally, the possibility of cryptic species in the Tetrabaenaceae provides an exciting opportunity to study the recent divergence of lineages adapted to live in very different thermal environments.


Asunto(s)
Chlorophyceae , Volvox , Filogenia , Evolución Biológica , Volvox/genética , Fósiles , Plantas , Diferenciación Celular
2.
Sci Adv ; 10(4): eadk3208, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38266082

RESUMEN

Multicellularity is key to the functional and ecological success of the Eukarya, underpinning much of their modern diversity in both terrestrial and marine ecosystems. Despite the widespread occurrence of simple multicellular organisms among eukaryotes, when this innovation arose remains an open question. Here, we report cellularly preserved multicellular microfossils (Qingshania magnifica) from the ~1635-million-year-old Chuanlinggou Formation, North China. The fossils consist of large uniseriate, unbranched filaments with cell diameters up to 190 micrometers; spheroidal structures, possibly spores, occur within some cells. In combination with spectroscopic characteristics, the large size and morphological complexity of these fossils support their interpretation as eukaryotes, likely photosynthetic, based on comparisons with extant organisms. The occurrence of multicellular eukaryotes in Paleoproterozoic rocks not much younger than those containing the oldest unambiguous evidence of eukaryotes as a whole supports the hypothesis that simple multicellularity arose early in eukaryotic history, as much as a billion years before complex multicellular organisms diversified in the oceans.


Asunto(s)
Ecosistema , Fotosíntesis , China , Citoesqueleto , Eucariontes
3.
Curr Biol ; 34(4): 740-754.e4, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38262417

RESUMEN

Brown algae are the only group of heterokont protists exhibiting complex multicellularity. Since their origin, brown algae have adapted to various marine habitats, evolving diverse thallus morphologies and gamete types. However, the evolutionary processes behind these transitions remain unclear due to a lack of a robust phylogenetic framework and problems with time estimation. To address these issues, we employed plastid genome data from 138 species, including heterokont algae, red algae, and other red-derived algae. Based on a robust phylogeny and new interpretations of algal fossils, we estimated the geological times for brown algal origin and diversification. The results reveal that brown algae first evolved true multicellularity, with plasmodesmata and reproductive cell differentiation, during the late Ordovician Period (ca. 450 Ma), coinciding with a major diversification of marine fauna (the Great Ordovician Biodiversification Event) and a proliferation of multicellular green algae. Despite its early Paleozoic origin, the diversification of major orders within this brown algal clade accelerated only during the Mesozoic Era, coincident with both Pangea rifting and the diversification of other heterokont algae (e.g., diatoms), coccolithophores, and dinoflagellates, with their red algal-derived plastids. The transition from ancestral isogamy to oogamy was followed by three simultaneous reappearances of isogamy during the Cretaceous Period. These are concordant with a positive character correlation between parthenogenesis and isogamy. Our new brown algal timeline, combined with a knowledge of past environmental conditions, shed new light on brown algal diversification and the intertwined evolution of multicellularity and sexual reproduction.


Asunto(s)
Phaeophyceae , Rhodophyta , Filogenia , Eucariontes/genética , Plantas , Rhodophyta/genética , Plastidios/genética , Phaeophyceae/genética , Evolución Molecular
4.
iScience ; 26(8): 107338, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37520734

RESUMEN

Cyanobacteria have a long evolutionary history, well documented in marine rocks. They are also abundant and diverse in terrestrial environments; however, although phylogenies suggest that the group colonized land early in its history, paleontological documentation of this remains limited. The Rhynie chert (407 Ma), our best preserved record of early terrestrial ecosystems, provides an opportunity to illuminate aspects of cyanobacterial diversity and ecology as plants began to radiate across the land surface. We used light microscopy and super-resolution confocal laser scanning microscopy to study a new population of Rhynie cyanobacteria; we also reinvestigated previously described specimens that resemble the new fossils. Our study demonstrates that all are part of a single fossil species belonging to the Hapalosiphonaceae (Nostocales). Along with other Rhynie microfossils, these remains show that the accommodation of morphologically complex cyanobacteria to terrestrial ecosystems transformed by embryophytes was well underway more than 400 million years ago.

5.
Sci Adv ; 8(21): eabm7826, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35622915

RESUMEN

Among the earliest consequences of climate change are extreme weather and rising sea levels-two challenges to which coastal environments are particularly vulnerable. Often found in coastal settings are microbial mats-complex, stratified microbial ecosystems that drive massive nutrient fluxes through biogeochemical cycles and have been important constituents of Earth's biosphere for eons. Little Ambergris Cay, in the Turks and Caicos Islands, supports extensive mats that vary sharply with relative water level. We characterized the microbial communities across this variation to understand better the emerging threat of sea level rise. In September 2017, the eyewall of category 5 Hurricane Irma transited the island. We monitored the impact and recovery from this devastating storm event. New mat growth proceeded rapidly, with patterns suggesting that storm perturbation may facilitate the adaptation of these ecosystems to changing sea level. Sulfur cycling, however, displayed hysteresis, stalling for >10 months after the hurricane and likely altering carbon storage potential.

6.
Sci Adv ; 8(10): eabl9653, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35263127

RESUMEN

Calcium carbonate (CaCO3) biomineralizing organisms have played major roles in the history of life and the global carbon cycle during the past 541 Ma. Both marine diversification and mass extinctions reflect physiological responses to environmental changes through time. An integrated understanding of carbonate biomineralization is necessary to illuminate this evolutionary record and to understand how modern organisms will respond to 21st century global change. Biomineralization evolved independently but convergently across phyla, suggesting a unity of mechanism that transcends biological differences. In this review, we combine CaCO3 skeleton formation mechanisms with constraints from evolutionary history, omics, and a meta-analysis of isotopic data to develop a plausible model for CaCO3 biomineralization applicable to all phyla. The model provides a framework for understanding the environmental sensitivity of marine calcifiers, past mass extinctions, and resilience in 21st century acidifying oceans. Thus, it frames questions about the past, present, and future of CaCO3 biomineralizing organisms.

7.
Trends Microbiol ; 30(2): 143-157, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34229911

RESUMEN

Cyanobacteria are the only prokaryotes to have evolved oxygenic photosynthesis, transforming the biology and chemistry of our planet. Genomic and evolutionary studies have revolutionized our understanding of early oxygenic phototrophs, complementing and dramatically extending inferences from the geologic record. Molecular clock estimates point to a Paleoarchean origin (3.6-3.2 billion years ago, bya) of the core proteins of Photosystem II (PSII) involved in oxygenic photosynthesis and a Mesoarchean origin (3.2-2.8 bya) for the last common ancestor of modern cyanobacteria. Nonetheless, most extant cyanobacteria diversified after the Great Oxidation Event (GOE), an environmental watershed ca. 2.45 bya made possible by oxygenic photosynthesis. Throughout their evolutionary history, cyanobacteria have played a key role in the global carbon cycle.


Asunto(s)
Cianobacterias , Evolución Biológica , Cianobacterias/genética , Cianobacterias/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Fotosíntesis/genética
9.
Nat Commun ; 12(1): 3985, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183660

RESUMEN

The Great Oxygenation Event (GOE), ca. 2.4 billion years ago, transformed life and environments on Earth. Its causes, however, are debated. We mathematically analyze the GOE in terms of ecological dynamics coupled with a changing Earth. Anoxygenic photosynthetic bacteria initially dominate over cyanobacteria, but their success depends on the availability of suitable electron donors that are vulnerable to oxidation. The GOE is triggered when the difference between the influxes of relevant reductants and phosphate falls below a critical value that is an increasing function of the reproductive rate of cyanobacteria. The transition can be either gradual and reversible or sudden and irreversible, depending on sources and sinks of oxygen. Increasing sources and decreasing sinks of oxygen can also trigger the GOE, but this possibility depends strongly on migration of cyanobacteria from privileged sites. Our model links ecological dynamics to planetary change, with geophysical evolution determining the relevant time scales.


Asunto(s)
Cianobacterias/metabolismo , Planeta Tierra , Evolución Planetaria , Atmósfera , Oxidación-Reducción
10.
Nat Commun ; 12(1): 3037, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34031392

RESUMEN

Microbialites accrete where environmental conditions and microbial metabolisms promote lithification, commonly through carbonate cementation. On Little Ambergris Cay, Turks and Caicos Islands, microbial mats occur widely in peritidal environments above ooid sand but do not become lithified or preserved. Sediment cores and porewater geochemistry indicated that aerobic respiration and sulfide oxidation inhibit lithification and dissolve calcium carbonate sand despite widespread aragonite precipitation from platform surface waters. Here, we report that in tidally pumped environments, microbial metabolisms can negate the effects of taphonomically-favorable seawater chemistry on carbonate mineral saturation and microbialite development.


Asunto(s)
Compuestos de Calcio/química , Ecosistema , Óxidos/química , Arena/química , Arena/microbiología , Carbonato de Calcio/metabolismo , Carbonatos , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Microbiota , Minerales , Agua de Mar/química , Agua de Mar/microbiología , Indias Occidentales
11.
PLoS One ; 16(3): e0247849, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33651837

RESUMEN

335-330 million-year-old cherts from the Massif Central, France, contain exceptionally well-preserved remains of an early forest ecosystem, including plants, fungi and other microorganisms. Here we reinvestigate the original material prepared by Renault and Roche from collections of the Muséum National d'Histoire Naturelle, Paris, and present a re-evaluation of Oochytrium lepidodendri (Renault 1894), originally described as a zoosporic fungus. Confocal laser scanning microscopy (CLSM) was used to study the microfossils, enabling us in software to digitally reconstruct them in three-dimensional detail. We reinterpret O. lepidodendri as a pseudofungus and favour placement within the oomycetes, a diverse clade of saprotrophs and both animal and plant parasites. Phylogenetically, O. lepidodendri appears to belong to a group of oomycetes distinct from those previously described from Paleozoic rocks and most likely related to the Peronosporales s.l. This study adds to our knowledge of Paleozoic eukaryotic diversity and reinforces the view that oomycetes were early and diverse constituents of terrestrial biotas, playing similar ecological roles to those they perform in modern ecosystems.


Asunto(s)
Ecosistema , Bosques , Oomicetos , Filogenia , Francia , Microscopía Confocal
12.
Nat Commun ; 12(1): 351, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441548

RESUMEN

Resolving how Earth surface redox conditions evolved through the Proterozoic Eon is fundamental to understanding how biogeochemical cycles have changed through time. The redox sensitivity of cerium relative to other rare earth elements and its uptake in carbonate minerals make the Ce anomaly (Ce/Ce*) a particularly useful proxy for capturing redox conditions in the local marine environment. Here, we report Ce/Ce* data in marine carbonate rocks through 3.5 billion years of Earth's history, focusing in particular on the mid-Proterozoic Eon (i.e., 1.8 - 0.8 Ga). To better understand the role of atmospheric oxygenation, we use Ce/Ce* data to estimate the partial pressure of atmospheric oxygen (pO2) through this time. Our thermodynamics-based modeling supports a major rise in atmospheric oxygen level in the aftermath of the Great Oxidation Event (~ 2.4 Ga), followed by invariant pO2 of about 1% of present atmospheric level through most of the Proterozoic Eon (2.4 to 0.65 Ga).

13.
Interface Focus ; 10(4): 20200011, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32642055

RESUMEN

Mudstone-hosted microfossils are a major component of the Proterozoic fossil record, particularly dominating the record of early eukaryotic life. Early organisms possessed no biomineralized parts to resist decay and controls on their fossilization in mudstones are poorly understood. Consequently, the Proterozoic fossil record is compromised-we do not know whether changing temporal/spatial patterns of microfossil occurrences reflect evolution or the distribution of favourable fossilization conditions. We investigated fossilization within the approximately 1000 Ma Lakhanda Group (Russia) and the approximately 800 Ma Svanbergfjellet and Wynniatt formations (Svalbard and Arctic Canada). Vertical sections of microfossils and surrounding matrices were extracted from thin sections by focused ion beam milling. Elemental mapping and synchrotron-based infrared microspectroscopy revealed that microfossils are surrounded by haloes rich in aluminium, probably hosted in kaolinite. Kaolinite has been implicated in Cambrian Burgess Shale-type (BST) fossilization and is known to slow the growth of degraders. The Neoproterozoic mudstone microfossil record may be biased to tropical settings conducive to kaolinite formation. These deposits lack metazoan fossils even though they share fossilization conditions with younger BST deposits that are capable of preserving non-mineralizing metazoans. Thus metazoans, at least those typically preserved in BST deposits, were probably absent from sedimentary environments before approximately 800 Ma.

14.
Proc Natl Acad Sci U S A ; 117(22): 11961-11967, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32424088

RESUMEN

The Ediacaran Period (635 to 541 Ma) marks the global transition to a more productive biosphere, evidenced by increased availability of food and oxidants, the appearance of macroscopic animals, significant populations of eukaryotic phytoplankton, and the onset of massive phosphorite deposition. We propose this entire suite of changes results from an increase in the size of the deep-water marine phosphorus reservoir, associated with rising sulfate concentrations and increased remineralization of organic P by sulfate-reducing bacteria. Simple mass balance calculations, constrained by modern anoxic basins, suggest that deep-water phosphate concentrations may have increased by an order of magnitude without any increase in the rate of P input from the continents. Strikingly, despite a major shift in phosphorite deposition, a new compilation of the phosphorus content of Neoproterozoic and early Paleozoic shows little secular change in median values, supporting the view that changes in remineralization and not erosional P fluxes were the principal drivers of observed shifts in phosphorite accumulation. The trigger for these changes may have been transient Neoproterozoic weathering events whose biogeochemical consequences were sustained by a set of positive feedbacks, mediated by the oxygen and sulfur cycles, that led to permanent state change in biogeochemical cycling, primary production, and biological diversity by the end of the Ediacaran Period.

15.
Proc Natl Acad Sci U S A ; 117(5): 2551-2559, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31911467

RESUMEN

The Neoproterozoic Era records the transition from a largely bacterial to a predominantly eukaryotic phototrophic world, creating the foundation for the complex benthic ecosystems that have sustained Metazoa from the Ediacaran Period onward. This study focuses on the evolutionary origins of green seaweeds, which play an important ecological role in the benthos of modern sunlit oceans and likely played a crucial part in the evolution of early animals by structuring benthic habitats and providing novel niches. By applying a phylogenomic approach, we resolve deep relationships of the core Chlorophyta (Ulvophyceae or green seaweeds, and freshwater or terrestrial Chlorophyceae and Trebouxiophyceae) and unveil a rapid radiation of Chlorophyceae and the principal lineages of the Ulvophyceae late in the Neoproterozoic Era. Our time-calibrated tree points to an origin and early diversification of green seaweeds in the late Tonian and Cryogenian periods, an interval marked by two global glaciations with strong consequent changes in the amount of available marine benthic habitat. We hypothesize that unicellular and simple multicellular ancestors of green seaweeds survived these extreme climate events in isolated refugia, and diversified in benthic environments that became increasingly available as ice retreated. An increased supply of nutrients and biotic interactions, such as grazing pressure, likely triggered the independent evolution of macroscopic growth via different strategies, including true multicellularity, and multiple types of giant-celled forms.


Asunto(s)
Chlorophyta/crecimiento & desarrollo , Evolución Molecular , Algas Marinas/crecimiento & desarrollo , Chlorophyta/clasificación , Ecosistema , Filogenia , Algas Marinas/clasificación
16.
Curr Biol ; 29(23): R1218-R1223, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31794750

RESUMEN

In 1912, William Mackie, a medical practitioner surveying the regional geology west of Aberdeen, Scotland, happened on some unusual rocks (Figure 1) near the village of Rhynie. Dark gray to nearly black and shot through with cylindrical structures a few millimeters in diameter, these rocks differed markedly from the shales and volcanic rocks of local hills. Mackie had discovered the Rhynie chert - paleobotany's most iconic deposit - with its exceptionally preserved fossils that provide a uniquely clear view of early terrestrial ecosystems in statu nascendi. Early research by Robert Kidston and William Lang showed that the cylindrical structures in Rhynie rocks were the axes of early plants, preserved in remarkable cellular detail. A century of subsequent research confirmed that Rhynie provides not only an unparalleled record of early tracheophyte (vascular plant) evolution, but also offers additional paleontological treasures, including animals (mostly arthropods) and microorganisms ranging from fungi, algae, and oomycetes to testate amoebozoans, and even cyanobacteria. A captivating snapshot of life on land more than 400 million years ago, the Rhynie chert provides our earliest and best view of how terrestrial ecosystems came to be.


Asunto(s)
Ecosistema , Fósiles/historia , Paleontología/historia , Geología , Historia del Siglo XX , Escocia
17.
Proc Natl Acad Sci U S A ; 116(36): 17659-17665, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31427519

RESUMEN

Crystallization by particle attachment (CPA) of amorphous precursors has been demonstrated in modern biomineralized skeletons across a broad phylogenetic range of animals. Precisely the same precursors, hydrated (ACC-H2O) and anhydrous calcium carbonate (ACC), have been observed spectromicroscopically in echinoderms, mollusks, and cnidarians, phyla drawn from the 3 major clades of eumetazoans. Scanning electron microscopy (SEM) here also shows evidence of CPA in tunicate chordates. This is surprising, as species in these clades have no common ancestor that formed a mineralized skeleton and appear to have evolved carbonate biomineralization independently millions of years after their late Neoproterozoic divergence. Here we correlate the occurrence of CPA from ACC precursor particles with nanoparticulate fabric and then use the latter to investigate the antiquity of the former. SEM images of early biominerals from Ediacaran and Cambrian shelly fossils show that these early calcifiers used attachment of ACC particles to form their biominerals. The convergent evolution of biomineral CPA may have been dictated by the same thermodynamics and kinetics as we observe today.


Asunto(s)
Exoesqueleto/metabolismo , Biomineralización/fisiología , Carbonato de Calcio/metabolismo , Cnidarios , Equinodermos , Moluscos , Animales , Cnidarios/clasificación , Cnidarios/metabolismo , Equinodermos/clasificación , Equinodermos/metabolismo , Fósiles , Moluscos/clasificación , Moluscos/metabolismo
18.
Nat Commun ; 10(1): 911, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30796215

RESUMEN

Rocks of Ediacaran age (~635-541 Ma) contain the oldest fossils of large, complex organisms and their behaviors. These fossils document developmental and ecological innovations, and suggest that extinctions helped to shape the trajectory of early animal evolution. Conventional methods divide Ediacaran macrofossil localities into taxonomically distinct clusters, which may represent evolutionary, environmental, or preservational variation. Here, we investigate these possibilities with network analysis of body and trace fossil occurrences. By partitioning multipartite networks of taxa, paleoenvironments, and geologic formations into community units, we distinguish between biostratigraphic zones and paleoenvironmentally restricted biotopes, and provide empirically robust and statistically significant evidence for a global, cosmopolitan assemblage unique to terminal Ediacaran strata. The assemblage is taxonomically depauperate but includes fossils of recognizable eumetazoans, which lived between two episodes of biotic turnover. These turnover events were the first major extinctions of complex life and paved the way for the Cambrian radiation of animals.


Asunto(s)
Extinción Biológica , Fósiles/anatomía & histología , Paleontología/métodos , Animales , Evolución Biológica
19.
Curr Biol ; 29(3): 461-467.e2, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30661795

RESUMEN

The Lower Devonian Rhynie chert is justly famous for the clear glimpse it offers of early terrestrial ecosystems [1]. Seven species of stem- and crown-group vascular plants have been described from Rhynie, many preserved in growth position [2], as well as 14 species of invertebrate animals, all arthropods [3] save for a single nematode population [4]. While these shed welcome light on early tracheophytes and land animals, modern terrestrial ecosystems additionally contain a diversity of microscopic organisms that are key to ecosystem function, including fungi, protists, and bacteria. Fungi ranging from mycorrhizae to saprophytes are well preserved in Rhynie rocks ([5] and references therein), and oomycetes are also present [5]. Both green algae (charophytes) and cyanobacteria have also been documented locally [6, 7, 8]. To date, however, phagotrophic protists have not been observed in Rhynie cherts, even though such organisms contribute importantly to carbon, nitrogen, and silica cycling in modern terrestrial communities [9]. Here, we report a population of organic tests described as Palaeoleptochlamys hassii gen. nov., sp. nov. from a pond along the Rhynie alluvial plain, which we interpret as arcellinid amoebozoans. These fossils expand the ecological dimensions of the Rhynie biota and support the hypothesis that arcellinids transitioned from marine through freshwater environments to colonize soil ecosystems in synchrony with early vascular plants.


Asunto(s)
Amebozoos/clasificación , Fósiles , Amebozoos/citología , Amebozoos/fisiología , Microscopía Confocal , Paleontología , Escocia
20.
Geobiology ; 16(5): 498-506, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29851212

RESUMEN

We report the results of simple experiments which support the hypothesis that changes in ocean chemistry beginning in the Mesozoic Era resulted in an increase in the nutritional quality per mole of C and per cell of planktonic algal biomass compared to earlier phytoplankton. We cultured a cyanobacterium, a diatom, a dinoflagellate, and a green alga in media mimicking aspects of the chemistry of Palaeozoic and Mesozoic-Cenozoic oceans. Substantial differences emerged in the quality of algal biomass between the Palaeozoic and Mesozoic-Cenozoic growth regimes; these differences were strongly affected by interspecific interactions (i.e., the co-existence of different species alters responses to the chemistry of the medium). The change was in the direction of a Mesozoic-Cenozoic biomass enriched in protein per mole C, although cells contained less carbon overall. This would lead to a lower C:N ratio. On the assumption that Mesozoic-Cenozoic grazers' assimilation of total C was similar to that of their earlier counterparts, their diet would be stoichiometrically closer to their C:N requirement. This, along with an increase in mean cell size among continental shelf phytoplankton, could have helped to facilitate observed evolutionary changes in the Mesozoic marine fauna. In turn, increased grazing pressure would have operated as a selective force for the radiation of phytoplankton clades better equipped with antigrazing capabilities (sensu lato), as found widely in phytoplankton with biomineralization. Our results emphasize potential links between changing seawater chemistry, increased predation pressure and the rise to ecological dominance of chlorophyll a+c algae in Mesozoic oceans. The experiments also suggest a potential role for ocean chemistry in changes of marine trophic structure from the Palaeozoic to the later Mesozoic Era.


Asunto(s)
Biomasa , Fitoplancton/metabolismo , Clorofila/metabolismo , Clorofila A/metabolismo , Océanos y Mares , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA