Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 94(32): 11264-11271, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35913787

RESUMEN

Acidification of intracellular vesicles, such as endosomes and lysosomes, is a key pathway for regulating the function of internal proteins. Most conventional methods of measuring pH are not satisfactory for quantifying the pH inside these vesicles. Here, we investigated the molecular requirements for a fluorescence probe to measure the intravesicular acidic pH in living cells by means of fluorescence lifetime imaging microscopy (FLIM). The developed probe, m-DiMeNAF488, exhibits a pH-dependent equilibrium between highly fluorescent and moderately fluorescent forms, which has distinct and detectable fluorescence lifetimes of 4.36 and 0.58 ns, respectively. The pKa(τ) value of m-DiMeNAF488 was determined to be 4.58, which would be favorable for evaluating the pH in the acidic vesicles. We were able to monitor the pH changes in phagosomes during phagocytosis by means of FLIM using m-DiMeNAF488. This probe is expected to be a useful tool for investigating acidic pH-regulated biological phenomena.


Asunto(s)
Lisosomas , Imagen Óptica , Ácidos/análisis , Endosomas , Colorantes Fluorescentes/química , Humanos , Concentración de Iones de Hidrógeno , Lisosomas/química , Microscopía Fluorescente/métodos
2.
J Immunol ; 200(1): 218-228, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29141864

RESUMEN

As osteoclasts have the central roles in normal bone remodeling, it is ideal to regulate only the osteoclasts performing pathological bone destruction without affecting normal osteoclasts. Based on a hypothesis that pathological osteoclasts form under the pathological microenvironment of the bone tissues, we here set up optimum culture conditions to examine the entity of pathologically activated osteoclasts (PAOCs). Through searching various inflammatory cytokines and their combinations, we found the highest resorbing activity of osteoclasts when osteoclasts were formed in the presence of M-CSF, receptor activator of NF-κB ligand, and IL-1ß. We have postulated that these osteoclasts are PAOCs. Analysis using confocal laser microscopy revealed that PAOCs showed extremely high proton secretion detected by the acid-sensitive fluorescence probe Rh-PM and bone resorption activity compared with normal osteoclasts. PAOCs showed unique morphology bearing high thickness and high motility with motile cellular processes in comparison with normal osteoclasts. We further examined the expression of Kindlin-3 and Talin-1, essential molecules for activating integrin ß-chains. Although normal osteoclasts express high levels of Kindlin-3 and Talin-1, expression of these molecules was markedly suppressed in PAOCs, suggesting the abnormality in the adhesion property. When whole membrane surface of mature osteoclasts was biotinylated and analyzed, the IL-1ß-induced cell surface protein was detected. PAOCs could form a subpopulation of osteoclasts possibly different from normal osteoclasts. PAOC-specific molecules could be an ideal target for regulating pathological bone destruction.


Asunto(s)
Resorción Ósea/inmunología , Interleucina-1beta/inmunología , Osteoclastos/inmunología , Animales , Adhesión Celular , Células Cultivadas , Regulación hacia Abajo , Factor Estimulante de Colonias de Macrófagos/inmunología , Masculino , Ratones , Ratones Mutantes , Terapia Molecular Dirigida , Receptor Activador del Factor Nuclear kappa-B/inmunología , Talina/genética , Talina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA