Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Tree Physiol ; 34(3): 229-40, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24646690

RESUMEN

We investigated the role of glycolysis and sucrolysis in the difference in tolerance to root hypoxia between two Myrtaceae tree species, Melaleuca cajuputi (which shows superior tolerance to root hypoxia) and Eucalyptus camaldulensis (which does not). Analysis of the adenylate energy charge (AEC) in roots subjected to a 4-day hypoxic treatment (HT) in hydroponic culture revealed that the interspecies difference in tolerance corresponds to the ability to maintain energy status under root hypoxia: AEC was reduced by HT in E. camaldulensis, but not in M. cajuputi. The energy status in HT roots of E. camaldulensis was restored by feeding of glucose (Glc) but not sucrose (Suc). These data provide evidence that low substrate availability for glycolysis resulting from an impairment of sucrolysis suppresses ATP production under hypoxic conditions in this species. Measurements of the rates of O2 consumption and CO2 production in roots indicated that E. camaldulensis, but not M. cajuputi, failed to activate fermentation in HT roots. These results cannot be attributed to enzymatic dysfunction, because no inhibition of main glycolytic and fermentative enzymes was observed in both species, and Glc feeding had a beneficial effect on AEC of HT roots of E. camaldulensis. The impairment of sucrolysis was demonstrated by inhibited soluble acid invertase activity in HT roots of E. camaldulensis. In contrast, there was no inhibition in all sucrolytic enzymes tested in HT roots of M. cajuputi, suggesting that steady Suc degradation is essential for maintaining high energy status under root hypoxia. We conclude that root sucrolysis is one of the essential factors that determines the extent of tolerance to root hypoxia.


Asunto(s)
Adaptación Fisiológica , Eucalyptus/fisiología , Raíces de Plantas/fisiología , Sacarosa/metabolismo , Adenosina Trifosfato/metabolismo , Anaerobiosis , Dióxido de Carbono/metabolismo , Membrana Celular/enzimología , Respiración de la Célula , Citosol/enzimología , Metabolismo Energético , Eucalyptus/enzimología , Fermentación , Glucosiltransferasas/metabolismo , Glucólisis , Consumo de Oxígeno , Raíces de Plantas/enzimología , Solubilidad , beta-Fructofuranosidasa/metabolismo
2.
Tree Physiol ; 26(11): 1413-23, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16877326

RESUMEN

We compared the photosynthetic and photoassimilate transport responses of Melaleuca cajuputi Powell seedlings to root hypoxia with those of Eucalyptus camaldulensis Dehnh. Control and hypoxia treated roots were maintained in a nutrient solution through which air or nitrogen was bubbled. Under root hypoxic conditions, seedlings of M. cajuputi, a flood-tolerant species, maintained height growth, whereas seedlings of E. camaldulensis, a moderately flood-tolerant species, showed markedly decreased height growth compared with control seedlings. Root hypoxia caused decreases in whole-plant biomass, photosynthetic rate and stomatal conductance in E. camaldulensis, but not in M. cajuputi. Photoassimilate transport to roots decreased significantly in E. camaldulensis seedlings 4 days after treatment and starch accumulated in mature leaves. Photoassimilate supply to hypoxic roots of E. camaldulensis seedlings was, thus, limited by reduced photoassimilate transport rather than by reduced photosynthesis. In contrast, M. cajuputi seedlings showed sustained photoassimilate transport to hypoxic roots and persistent photosynthesis, which together provided a substantial photoassimilate supply to the roots. Sucrose accumulated in hypoxic E. camaldulensis roots, but not in hypoxic M. cajuputi roots. A stable, low sucrose concentration in hypoxic roots would let M. cajuputi seedlings prolong photoassimilate transport to the roots. Photoassimilate partitioning among the water-soluble carbohydrates, starch and structural carbohydrates within the roots was unaffected by root hypoxia in E. camaldulensis, but in M. cajuputi, partitioning was shifted somewhat from structural carbohydrates to water-soluble carbohydrates. This suggests that M. cajuputi seedlings are able to increase photoassimilate utilization in metabolism and sustain energy production under root hypoxic conditions.


Asunto(s)
Desastres , Eucalyptus/metabolismo , Melaleuca/metabolismo , Fotosíntesis , Raíces de Plantas/metabolismo , Alcohol Deshidrogenasa/metabolismo , Transporte Biológico , Eucalyptus/crecimiento & desarrollo , Hipoxia , Melaleuca/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Tailandia
3.
Tree Physiol ; 26(1): 25-33, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16203711

RESUMEN

We demonstrated that the inorganic phosphate (P(i)) requirement for growth of Japanese red pine (Pinus densiflora Sieb. & Zucc.) seedlings is increased by elevated CO(2) concentration ([CO(2)]) and that responses of the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker & Couch to P(i) supply are also altered. To investigate the growth response of non-mycorrhizal seedlings to P(i) supply in elevated [CO(2)], non-mycorrhizal seedlings were grown for 73 days in ambient or elevated [CO(2)] (350 or 700 micromol mol(-1)) with nutrient solutions containing one of seven phosphate concentrations (0, 0.02, 0.04, 0.06, 0.08, 0.10 and 0.20 mM). In ambient [CO(2)], the growth response to P(i) was saturated at about 0.1 mM P(i), whereas in elevated [CO(2)], the growth response to P(i) supply did not saturate, even at the highest P(i) supply (0.2 mM), indicating that the P(i) requirement is higher in elevated [CO(2)] than in ambient [CO(2)]. The increased requirement was due mainly to an altered shoot growth response to P(i) supply. The enhanced P(i) requirement in elevated [CO(2)] was not associated with a change in photosynthetic response to P(i) or a change in leaf phosphorus (P) status. We investigated the effect of P(i) supply (0.04, 0.08 and 0.20 mM) on the ectomycorrhizal fungus P. tinctorius in mycorrhizal seedlings grown in ambient or elevated [CO(2)]. Root ergosterol concentration (an indicator of fungal biomass) decreased with increasing P(i) supply in ambient [CO(2)], but the decrease was far less in elevated [CO(2)]. In ambient [CO(2)] the ratio of extramatrical mycelium to root biomass decreased with increasing P(i) supply but did not change in elevated [CO(2)]. We conclude that, because elevated [CO(2)] increased the P(i) requirement for shoot growth, the significance of the ectomycorrhizal association was also increased in elevated [CO(2)].


Asunto(s)
Atmósfera , Dióxido de Carbono , Fosfatos/provisión & distribución , Pinus/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Metabolismo de los Hidratos de Carbono , Carbohidratos , Carbono/metabolismo , Micorrizas/metabolismo , Concentración Osmolar , Fosfatos/metabolismo , Fotosíntesis , Pinus/metabolismo , Pinus/fisiología , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Almidón , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA