Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Appl Ergon ; 119: 104293, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38703721

RESUMEN

BACKGROUND: Load carriage imposes high physical stresses on the human body, increasing the risk of injuries. This study assessed the effectiveness of a passive military exoskeleton in off-loading the weight placed on the body during heavy load carriage under static standing and dynamic walking conditions. METHODS: Eight full-time regular personnel of the Singapore Armed Forces enrolled in the study. Static loading tests included nine trials of 10-s quiet standing while carrying different loads (0-55 kg) with and without the exoskeleton. For dynamic loading, participants walked on a treadmill on flat, inclined, and declined surfaces while carrying two different loads (25 kg, 35 kg) with and without the exoskeleton. In-shoe normal ground reaction forces (GRF) were recorded during quiet standing and treadmill walking. Differences in total force with and without the exoskeleton during static loading were compared using Wilcoxon one-sample signed ranked tests against zero (no weight off-load) as a reference. Statistical parametric mapping test was used to compare the walking in-shoe GRF-time series with and without exoskeleton use for each load and surface condition. RESULTS: Exoskeleton use was effective in off-loading loads of 2.3-13.5 kg during static quiet standing but the response varied substantially across loads and among the participants. Statistical analysis revealed no meaningful differences in the walking in-shoe GRF with and without exoskeleton use. The results were largely consistent across flat, inclined, and declined surfaces, and both 25-kg and 35-kg loads. CONCLUSIONS: The passive military exoskeleton was effective in off-loading some load from the human body during static quiet standing but not dynamic walking on flat and sloped surfaces. The varied response across loads and participants calls for better design and fitting of the military exoskeleton to individual users.


Asunto(s)
Estudios Cruzados , Dispositivo Exoesqueleto , Personal Militar , Caminata , Soporte de Peso , Humanos , Soporte de Peso/fisiología , Masculino , Caminata/fisiología , Adulto , Fenómenos Biomecánicos , Singapur , Posición de Pie , Adulto Joven
2.
Sensors (Basel) ; 23(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37514763

RESUMEN

The loadsol® wireless in-shoe force sensors can be useful for in-field measurements. However, its accuracy is unknown in the military context, whereby soldiers have to carry heavy loads and walk in military boots. The purpose of this study was to establish the validity of the loadsol® sensors in military personnel during loaded walking on flat, inclined and declined surfaces. Full-time Singapore Armed Forces (SAF) personnel (n = 8) walked on an instrumented treadmill on flat, 10° inclined, and 10° declined gradients while carrying heavy loads (25 kg and 35 kg). Normal ground reaction forces (GRF), perpendicular to the contact surface, were simultaneously measured using both the loadsol® sensors inserted in the military boots and the Bertec instrumented treadmill as the gold standard. A total of eight variables of interest were compared between loadsol® and treadmill, including four kinetic (impact peak force, active peak force, impulse, loading rate) and four spatiotemporal (stance time, stride time, cadence, step length) variables. Validity was assessed using Bland-Altman plots and 95% Limits of Agreement (LoA). Bias was calculated as the mean difference between the values obtained from loadsol® and the instrumented treadmill. Results showed similar force-time profiles between loadsol® sensors and the instrumented treadmill. The bias of most variables was generally low, with a narrow range of LoA. The high accuracy and good agreement with standard laboratory equipment suggest that the loadsol® system is a valid tool for measuring normal GRF during walking in military boots under heavy load carriage.


Asunto(s)
Personal Militar , Humanos , Marcha , Zapatos , Fenómenos Biomecánicos , Caminata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA