Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Ann Rheum Dis ; 82(3): 393-402, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36261249

RESUMEN

OBJECTIVES: This study investigated the stage-specific and location-specific deposition and characteristics of minerals in human osteoarthritis (OA) cartilages via multiple nano-analytical technologies. METHODS: Normal and OA cartilages were serially sectioned for micro-CT, scanning electron microscopy with energy dispersive X-ray spectroscopy, micro-Raman spectroscopy, focused ion beam scanning electron microscopy, high-resolution electron energy loss spectrometry with transmission electron microscopy, nanoindentation and atomic force microscopy to analyse the structural, compositional and mechanical properties of cartilage in OA progression. RESULTS: We found that OA progressed by both top-down calcification at the joint surface and bottom-up calcification at the osteochondral interface. The top-down calcification process started with spherical mineral particle formation in the joint surface during early-stage OA (OA-E), followed by fibre formation and densely packed material transformation deep into the cartilage during advanced-stage OA (OA-A). The bottom-up calcification in OA-E started when an excessive layer of calcified tissue formed above the original calcified cartilage, exhibiting a calcified sandwich structure. Over time, the original and upper layers of calcified cartilage fused, which thickened the calcified cartilage region and disrupted the cartilage structure. During OA-E, the calcified cartilage was hypermineralised, containing stiffer carbonated hydroxyapatite (HAp). During OA-A, it was hypomineralised and contained softer HAp. This discrepancy may be attributed to matrix vesicle nucleation during OA-E and carbonate cores during OA-A. CONCLUSIONS: This work refines our current understanding of the mechanism underlying OA progression and provides the foothold for potential therapeutic targeting strategies once the location-specific cartilage calcification features in OA are established.


Asunto(s)
Calcinosis , Cartílago Articular , Osteoartritis , Humanos , Cartílago Articular/diagnóstico por imagen , Osteoartritis/diagnóstico por imagen , Calcinosis/diagnóstico por imagen , Calcinosis/etiología
2.
ACS Appl Mater Interfaces ; 13(46): 54801-54816, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34706537

RESUMEN

Irregular partial-thickness cartilage defect is a common pathogenesis of osteoarthritis (OA) with no available treatment in clinical practice. Currently, cartilage tissue engineering is only suitable for a limited area of full-thickness cartilage defect. Here, we design a biomimetic joint paint for the intractable partial-thickness cartilage defect repair. The joint paint, composed of a bridging layer of chondroitin sulfate and a surface layer of gelatin methacrylate with hyaluronic acid, can quickly and tightly adhere to the cartilage defect by light activation. Being treated by the joint paint, the group of rabbit and pig models with partial-thickness cartilage defects showed a restoration of a smooth cartilage surface and the preservation of normal glycosaminoglycan content, whereas the untreated control group exhibited serious progressive OA development. This paint treatment functions by prohibiting chondrocyte apoptosis, maintaining chondrocyte phenotype, and preserving the content of glycosaminoglycan in the partial-thickness cartilage defects. These findings illustrated that the biomimetic joint paint is an effective and revolutionary therapeutics for the patients with noncurable partial-thickness cartilage defects.


Asunto(s)
Materiales Biomiméticos/metabolismo , Cartílago Articular/metabolismo , Osteoartritis/metabolismo , Ingeniería de Tejidos , Andamios del Tejido/química , Animales , Materiales Biomiméticos/química , Cartílago Articular/química , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Ácido Hialurónico/química , Ácido Hialurónico/metabolismo , Metacrilatos/química , Metacrilatos/metabolismo , Osteoartritis/patología , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA