Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Lett Appl Microbiol ; 77(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38816215

RESUMEN

γ-Aminobutyric acid (GABA) is an inhibitory neurotransmitter of the central nervous system that impacts physical and mental health. Low GABA levels have been documented in several diseases, including multiple sclerosis and depression, and studies suggest that GABA could improve disease outcomes in those conditions. Probiotic bacteria naturally produce GABA and have been engineered to enhance its synthesis. Strains engineered thus far use inducible expression systems that require the addition of exogenous molecules, which complicates their development as therapeutics. This study aimed to overcome this challenge by engineering Lactococcus lactis with a constitutive GABA synthesis gene cassette. GABA synthesizing and transport genes (gadB and gadC) were cloned onto plasmids downstream of constitutive L. lactis promoters [P2, P5, shortened P8 (P8s)] of different strengths and transformed into L. lactis. Fold increase in gadCB expression conferred by these promoters (P2, P5, and P8s) was 322, 422, and 627, respectively, compared to the unmodified strain (P = 0.0325, P8s). GABA synthesis in the highest gadCB expressing strain, L. lactis-P8s-glutamic acid decarboxylase (GAD), was dependent on media supplementation with glutamic acid and significantly higher than the unmodified strain (P < 0.0001, 125 mM, 200 mM glutamic acid). Lactococcus lactis-P8s-GAD is poised for therapeutic testing in animal models of low-GABA-associated disease.


Asunto(s)
Glutamato Descarboxilasa , Lactococcus lactis , Regiones Promotoras Genéticas , Ácido gamma-Aminobutírico , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/biosíntesis , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Ingeniería Genética , Plásmidos/genética , Ácido Glutámico/metabolismo , Ingeniería Metabólica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
2.
Clin Immunol ; 235: 108766, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34091018

RESUMEN

Farnesol is a 15­carbon organic isoprenol synthesized by plants and mammals with anti-oxidant, anti-inflammatory, and neuroprotective activities. We sought to determine whether farnesol treatment would result in protection against murine experimental autoimmune encephalomyelitis (EAE), a well-established model of multiple sclerosis (MS). We compared disease progression and severity in C57BL/6 mice treated orally with 100 mg/kg/day farnesol solubilized in corn oil to corn-oil treated and untreated EAE mice. Farnesol significantly delayed the onset of EAE (by ~2 days) and dramatically decreased disease severity (~80%) compared to controls. Disease protection by farnesol was associated with a significant reduction in spinal cord infiltration by monocytes-macrophages, dendritic cells, CD4+ T cells, and a significant change in gut microbiota composition, including a decrease in the Firmicutes:Bacteroidetes ratio. The study suggests FOL could protect MS patients against CNS inflammatory demyelination by partially modulating the gut microbiome composition.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/prevención & control , Farnesol/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Administración Oral , Animales , Femenino , Ratones
3.
Curr Protoc ; 1(12): e314, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34870901

RESUMEN

Microbiome composition studies are increasingly shedding light on animal models of disease. This paper describes a protocol for analyzing the gut microbiome composition prior to and after the induction of mice to experimental autoimmune encephalomyelitis (EAE), the principal animal model of the human neuroinflammatory demyelinating disease multiple sclerosis (MS). We also address and provide data assessing the impact of mice reared in different animal facilities on EAE induction. Furthermore, we discuss potential regulators of the gut-microbiome-brain axis (GMBA) in relation to neuroinflammation and implications on demyelinating disease states. Our results suggest that mice reared in different animal facilities produce different levels of EAE induction. These results highlight the importance of accounting for consistent environmental conditions when inducing EAE and other animal models of disease. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Study of the composition of the gut microbiome in the neuroinflammatory model of experimental autoimmune encephalomyelitis Basic Protocol 2: Experimental procedures for DNA extraction and microbiome analysis.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Microbioma Gastrointestinal , Esclerosis Múltiple , Animales , Modelos Animales de Enfermedad , Ratones , Enfermedades Neuroinflamatorias
4.
Diseases ; 8(3)2020 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-32872621

RESUMEN

There is an increasing interest in the intestinal microbiota as a critical regulator of the development and function of the immune, nervous, and endocrine systems. Experimental work in animal models has provided the foundation for clinical studies to investigate associations between microbiota composition and function and human disease, including multiple sclerosis (MS). Initial work done using an animal model of brain inflammation, experimental autoimmune encephalomyelitis (EAE), suggests the existence of a microbiota-gut-brain axis connection in the context of MS, and microbiome sequence analyses reveal increases and decreases of microbial taxa in MS intestines. In this review, we discuss the impact of the intestinal microbiota on the immune system and the role of the microbiome-gut-brain axis in the neuroinflammatory disease MS. We also discuss experimental evidence supporting the hypothesis that modulating the intestinal microbiota through genetically modified probiotics may provide immunomodulatory and protective effects as a novel therapeutic approach to treat this devastating disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA