Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Methods Mol Biol ; 2842: 325-352, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39012604

RESUMEN

The discovery of 5-hydroxymethylcytosine (5hmC) as a common DNA modification in mammalian genomes has ushered in new areas of inquiry regarding the dynamic epigenome. The balance between 5hmC and its precursor, 5-methylcytosine (5mC), has emerged as a determinant of key processes including cell fate specification, and alterations involving these bases have been implicated in the pathogenesis of various diseases. The identification of 5hmC separately from 5mC initially posed a challenge given that legacy epigenetic sequencing technologies could not discriminate between these two most abundant modifications, a significant blind spot considering their potentially functionally opposing roles. The growing interest in 5hmC, as well as in the Ten-Eleven Translocation (TET) family enzymes that catalyze its generation and further oxidation to 5-formylcytosine (5fC) and 5-carboxycytosine (5caC), has spurred the development of versatile methods for 5hmC detection. These methods enable the quantification and localization of 5hmC in diverse biological samples and, in some cases, at the resolution of individual nucleotides. However, navigating this growing toolbox of methods for 5hmC detection can be challenging. Here, we detail existing and emerging methods for the detection, quantification, and localization of 5hmC at global, locus-specific, and base resolution levels. These methods are discussed in the context of their advantages and limitations, with the goal of providing a framework to help guide researchers in choosing the level of resolution and the associated method that could be most suitable for specific needs.


Asunto(s)
5-Metilcitosina , ADN , Animales , Humanos , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/análisis , 5-Metilcitosina/metabolismo , ADN/genética , Metilación de ADN , Epigénesis Genética , Epigenómica/métodos , Genoma , Genómica/métodos
2.
Epigenetics ; 19(1): 2374979, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38970823

RESUMEN

TET1/2/3 dioxygenases iteratively demethylate 5-methylcytosine, beginning with the formation of 5-hydroxymethylcytosine (5hmC). The post-mitotic brain maintains higher levels of 5hmC than most peripheral tissues, and TET1 ablation studies have underscored the critical role of TET1 in brain physiology. However, deletion of Tet1 precludes the disentangling of the catalytic and non-catalytic functions of TET1. Here, we dissect these functions of TET1 by comparing adult cortex of Tet1 wildtype (Tet1 WT), a novel Tet1 catalytically dead mutant (Tet1 HxD), and Tet1 knockout (Tet1 KO) mice. Using DNA methylation array, we uncover that Tet1 HxD and KO mutations perturb the methylation status of distinct subsets of CpG sites. Gene ontology (GO) analysis on specific differential 5hmC regions indicates that TET1's catalytic activity is linked to neuronal-specific functions. RNA-Seq further shows that Tet1 mutations predominantly impact the genes that are associated with alternative splicing. Lastly, we performed High-performance Liquid Chromatography Mass-Spectrometry lipidomics on WT and mutant cortices and uncover accumulation of lysophospholipids lysophosphatidylethanolamine and lysophosphatidylcholine in Tet1 HxD cortex. In summary, we show that Tet1 HxD does not completely phenocopy Tet1 KO, providing evidence that TET1 modulates distinct cortical functions through its catalytic and non-catalytic roles.


Asunto(s)
5-Metilcitosina , Corteza Cerebral , Metilación de ADN , Proteínas Proto-Oncogénicas , Animales , Ratones , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análogos & derivados , Corteza Cerebral/metabolismo , Ratones Noqueados , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Islas de CpG , Mutación
3.
bioRxiv ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38826316

RESUMEN

The Infinium DNA Methylation BeadChips have significantly contributed to population-scale epigenetics research by enabling epigenome-wide trait association discoveries. Here, we design, describe, and experimentally verify a new iteration of this technology, the Methylation Screening Array (MSA), to focus on human trait screening and discovery. This array utilizes extensive data from previous Infinium platform-based epigenome-wide association studies (EWAS). It incorporates knowledge from the latest single-cell and cell type-resolution whole genome methylome profiles. The MSA is engineered to achieve scalable screening of epigenetics-trait association in an ultra-high sample throughput. Our design encompassed diverse human trait associations, including those with genetic, cellular, environmental, and demographical variables and human diseases such as genetic, neurodegenerative, cardiovascular, infectious, and immune diseases. We comprehensively evaluated this array's reproducibility, accuracy, and capacity for cell-type deconvolution and supporting 5-hydroxymethylation profiling in diverse human tissues. Our first atlas data using this platform uncovered the complex chromatin and tissue contexts of DNA modification variations and genetic variants linked to human phenotypes.

4.
Nat Struct Mol Biol ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755298

RESUMEN

The bacterial SOS response plays a key role in adaptation to DNA damage, including genomic stress caused by antibiotics. SOS induction begins when activated RecA*, an oligomeric nucleoprotein filament that forms on single-stranded DNA, binds to and stimulates autoproteolysis of the repressor LexA. Here, we present the structure of the complete Escherichia coli SOS signal complex, constituting full-length LexA bound to RecA*. We uncover an extensive interface unexpectedly including the LexA DNA-binding domain, providing a new molecular rationale for ordered SOS gene induction. We further find that the interface involves three RecA subunits, with a single residue in the central engaged subunit acting as a molecular key, inserting into an allosteric binding pocket to induce LexA cleavage. Given the pro-mutagenic nature of SOS activation, our structural and mechanistic insights provide a foundation for developing new therapeutics to slow the evolution of antibiotic resistance.

5.
Dev Cell ; 59(8): 1010-1027.e8, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38569549

RESUMEN

Ten-eleven translocation (TET) enzymes iteratively oxidize 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxylcytosine to facilitate active genome demethylation. Whether these bases are required to promote replication-coupled dilution or activate base excision repair during mammalian germline reprogramming remains unresolved due to the inability to decouple TET activities. Here, we generated two mouse lines expressing catalytically inactive TET1 (Tet1-HxD) and TET1 that stalls oxidation at 5hmC (Tet1-V). Tet1 knockout and catalytic mutant primordial germ cells (PGCs) fail to erase methylation at select imprinting control regions and promoters of meiosis-associated genes, validating the requirement for the iterative oxidation of 5mC for complete germline reprogramming. TET1V and TET1HxD rescue most hypermethylation of Tet1-/- sperm, suggesting the role of TET1 beyond its oxidative capability. We additionally identify a broader class of hypermethylated regions in Tet1 mutant mouse sperm that depend on TET oxidation for reprogramming. Our study demonstrates the link between TET1-mediated germline reprogramming and sperm methylome patterning.


Asunto(s)
5-Metilcitosina , 5-Metilcitosina/análogos & derivados , Metilación de ADN , Proteínas de Unión al ADN , Impresión Genómica , Oxidación-Reducción , Proteínas Proto-Oncogénicas , Espermatozoides , Animales , Masculino , Ratones , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Espermatozoides/metabolismo , 5-Metilcitosina/metabolismo , Reprogramación Celular/genética , Ratones Noqueados , Ratones Endogámicos C57BL
6.
Nucleic Acids Res ; 52(7): e38, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38407446

RESUMEN

The Infinium BeadChip is the most widely used DNA methylome assay technology for population-scale epigenome profiling. However, the standard workflow requires over 200 ng of input DNA, hindering its application to small cell-number samples, such as primordial germ cells. We developed experimental and analysis workflows to extend this technology to suboptimal input DNA conditions, including ultra-low input down to single cells. DNA preamplification significantly enhanced detection rates to over 50% in five-cell samples and ∼25% in single cells. Enzymatic conversion also substantially improved data quality. Computationally, we developed a method to model the background signal's influence on the DNA methylation level readings. The modified detection P-value calculation achieved higher sensitivities for low-input datasets and was validated in over 100 000 public diverse methylome profiles. We employed the optimized workflow to query the demethylation dynamics in mouse primordial germ cells available at low cell numbers. Our data revealed nuanced chromatin states, sex disparities, and the role of DNA methylation in transposable element regulation during germ cell development. Collectively, we present comprehensive experimental and computational solutions to extend this widely used methylation assay technology to applications with limited DNA.


Asunto(s)
Metilación de ADN , Análisis de la Célula Individual , Animales , Femenino , Humanos , Masculino , Ratones , Islas de CpG , ADN/genética , ADN/metabolismo , Epigenómica/métodos , Células Germinativas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de la Célula Individual/métodos
7.
Nucleic Acids Res ; 52(4): 2078-2090, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38261989

RESUMEN

The partnership of DNA deaminase enzymes with CRISPR-Cas nucleases is now a well-established method to enable targeted genomic base editing. However, an understanding of how Cas9 and DNA deaminases collaborate to shape base editor (BE) outcomes has been lacking. Here, we support a novel mechanistic model of base editing by deriving a range of hyperactive activation-induced deaminase (AID) base editors (hBEs) and exploiting their characteristic diversifying activity. Our model involves multiple layers of previously underappreciated cooperativity in BE steps including: (i) Cas9 binding can potentially expose both DNA strands for 'capture' by the deaminase, a feature that is enhanced by guide RNA mismatches; (ii) after strand capture, the intrinsic activity of the DNA deaminase can tune window size and base editing efficiency; (iii) Cas9 defines the boundaries of editing on each strand, with deamination blocked by Cas9 binding to either the PAM or the protospacer and (iv) non-canonical edits on the guide RNA bound strand can be further elicited by changing which strand is nicked by Cas9. Leveraging insights from our mechanistic model, we create novel hBEs that can remarkably generate simultaneous C > T and G > A transitions over >65 bp with significant potential for targeted gene diversification.


Asunto(s)
Proteína 9 Asociada a CRISPR , Citidina Desaminasa , Escherichia coli , Edición Génica , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Citidina Desaminasa/metabolismo , ADN/genética , Escherichia coli/metabolismo , Mutación , ARN Guía de Sistemas CRISPR-Cas , Humanos , Animales
8.
Nat Commun ; 15(1): 875, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287010

RESUMEN

RNA binding proteins (RBPs) are key regulators of RNA processing and cellular function. Technologies to discover RNA targets of RBPs such as TRIBE (targets of RNA binding proteins identified by editing) and STAMP (surveying targets by APOBEC1 mediated profiling) utilize fusions of RNA base-editors (rBEs) to RBPs to circumvent the limitations of immunoprecipitation (CLIP)-based methods that require enzymatic digestion and large amounts of input material. To broaden the repertoire of rBEs suitable for editing-based RBP-RNA interaction studies, we have devised experimental and computational assays in a framework called PRINTER (protein-RNA interaction-based triaging of enzymes that edit RNA) to assess over thirty A-to-I and C-to-U rBEs, allowing us to identify rBEs that expand the characterization of binding patterns for both sequence-specific and broad-binding RBPs. We also propose specific rBEs suitable for dual-RBP applications. We show that the choice between single or multiple rBEs to fuse with a given RBP or pair of RBPs hinges on the editing biases of the rBEs and the binding preferences of the RBPs themselves. We believe our study streamlines and enhances the selection of rBEs for the next generation of RBP-RNA target discovery.


Asunto(s)
Proteínas de Unión al ARN , ARN , ARN/metabolismo , Sitios de Unión/genética , Proteínas de Unión al ARN/metabolismo , Procesamiento Postranscripcional del ARN
9.
Nat Biotechnol ; 42(2): 305-315, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37095348

RESUMEN

Simple, efficient and well-tolerated delivery of CRISPR genome editing systems into primary cells remains a major challenge. Here we describe an engineered Peptide-Assisted Genome Editing (PAGE) CRISPR-Cas system for rapid and robust editing of primary cells with minimal toxicity. The PAGE system requires only a 30-min incubation with a cell-penetrating Cas9 or Cas12a and a cell-penetrating endosomal escape peptide to achieve robust single and multiplex genome editing. Unlike electroporation-based methods, PAGE gene editing has low cellular toxicity and shows no significant transcriptional perturbation. We demonstrate rapid and efficient editing of primary cells, including human and mouse T cells, as well as human hematopoietic progenitor cells, with editing efficiencies upwards of 98%. PAGE provides a broadly generalizable platform for next-generation genome engineering in primary cells.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Animales , Ratones , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Electroporación , Células Madre Hematopoyéticas
10.
bioRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37786695

RESUMEN

The Infinium BeadChip is the most widely used DNA methylome assay technology for population-scale epigenome profiling. However, the standard workflow requires over 200 ng of input DNA, hindering its application to small cell-number samples, such as primordial germ cells. We developed experimental and analysis workflows to extend this technology to suboptimal input DNA conditions, including ultra-low input down to single cells. DNA preamplification significantly enhanced detection rates to over 50% in five-cell samples and ∼25% in single cells. Enzymatic conversion also substantially improved data quality. Computationally, we developed a method to model the background signal's influence on the DNA methylation level readings. The modified detection p -values calculation achieved higher sensitivities for low-input datasets and was validated in over 100,000 public datasets with diverse methylation profiles. We employed the optimized workflow to query the demethylation dynamics in mouse primordial germ cells available at low cell numbers. Our data revealed nuanced chromatin states, sex disparities, and the role of DNA methylation in transposable element regulation during germ cell development. Collectively, we present comprehensive experimental and computational solutions to extend this widely used methylation assay technology to applications with limited DNA.

11.
bioRxiv ; 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37808757

RESUMEN

RNA binding proteins (RBPs) are key regulators of RNA processing and cellular function. Technologies to discover RNA targets of RBPs such as TRIBE (targets of RNA binding proteins identified by editing) and STAMP (surveying targets by APOBEC1 mediated profiling) utilize fusions of RNA base-editors (rBEs) to RBPs to circumvent the limitations of immunoprecipitation (CLIP)-based methods that require enzymatic digestion and large amounts of input material. To broaden the repertoire of rBEs suitable for editing-based RBP-RNA interaction studies, we have devised experimental and computational assays in a framework called PRINTER (protein-RNA interaction-based triaging of enzymes that edit RNA) to assess over thirty A-to-I and C-to-U rBEs, allowing us to identify rBEs that expand the characterization of binding patterns for both sequence-specific and broad-binding RBPs. We also propose specific rBEs suitable for dual-RBP applications. We show that the choice between single or multiple rBEs to fuse with a given RBP or pair of RBPs hinges on the editing biases of the rBEs and the binding preferences of the RBPs themselves. We believe our study streamlines and enhances the selection of rBEs for the next generation of RBP-RNA target discovery.

12.
Proc Natl Acad Sci U S A ; 120(36): e2303859120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37639593

RESUMEN

Recurrent chromosomal rearrangements found in rhabdomyosarcoma (RMS) produce the PAX3-FOXO1 fusion protein, which is an oncogenic driver and a dependency in this disease. One important function of PAX3-FOXO1 is to arrest myogenic differentiation, which is linked to the ability of RMS cells to gain an unlimited proliferation potential. Here, we developed a phenotypic screening strategy for identifying factors that collaborate with PAX3-FOXO1 to block myo-differentiation in RMS. Unlike most genes evaluated in our screen, we found that loss of any of the three subunits of the Nuclear Factor Y (NF-Y) complex leads to a myo-differentiation phenotype that resembles the effect of inactivating PAX3-FOXO1. While the transcriptomes of NF-Y- and PAX3-FOXO1-deficient RMS cells bear remarkable similarity to one another, we found that these two transcription factors occupy nonoverlapping sites along the genome: NF-Y preferentially occupies promoters, whereas PAX3-FOXO1 primarily binds to distal enhancers. By integrating multiple functional approaches, we map the PAX3 promoter as the point of intersection between these two regulators. We show that NF-Y occupies CCAAT motifs present upstream of PAX3 to function as a transcriptional activator of PAX3-FOXO1 expression in RMS. These findings reveal a critical upstream role of NF-Y in the oncogenic PAX3-FOXO1 pathway, highlighting how a broadly essential transcription factor can perform tumor-specific roles in governing cellular state.


Asunto(s)
Rabdomiosarcoma , Factor de Unión a CCAAT/genética , Diferenciación Celular/genética , Aberraciones Cromosómicas , Rabdomiosarcoma/genética , Factores de Transcripción
13.
Nat Biotechnol ; 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640946

RESUMEN

Oxidative modification of 5-methylcytosine (5mC) by ten-eleven translocation (TET) DNA dioxygenases generates 5-hydroxymethylcytosine (5hmC), the most abundant form of oxidized 5mC. Existing single-cell bisulfite sequencing methods cannot resolve 5mC and 5hmC, leaving the cell-type-specific regulatory mechanisms of TET and 5hmC largely unknown. Here, we present joint single-nucleus (hydroxy)methylcytosine sequencing (Joint-snhmC-seq), a scalable and quantitative approach that simultaneously profiles 5hmC and true 5mC in single cells by harnessing differential deaminase activity of APOBEC3A toward 5mC and chemically protected 5hmC. Joint-snhmC-seq profiling of single nuclei from mouse brains reveals an unprecedented level of epigenetic heterogeneity of both 5hmC and true 5mC at single-cell resolution. We show that cell-type-specific profiles of 5hmC or true 5mC improve multimodal single-cell data integration, enable accurate identification of neuronal subtypes and uncover context-specific regulatory effects on cell-type-specific genes by TET enzymes.

14.
Nat Chem Biol ; 19(8): 1004-1012, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37322153

RESUMEN

5-methylcytosine (5mC) is the most important DNA modification in mammalian genomes. The ideal method for 5mC localization would be both nondestructive of DNA and direct, without requiring inference based on detection of unmodified cytosines. Here we present direct methylation sequencing (DM-Seq), a bisulfite-free method for profiling 5mC at single-base resolution using nanogram quantities of DNA. DM-Seq employs two key DNA-modifying enzymes: a neomorphic DNA methyltransferase and a DNA deaminase capable of precise discrimination between cytosine modification states. Coupling these activities with deaminase-resistant adapters enables accurate detection of only 5mC via a C-to-T transition in sequencing. By comparison, we uncover a PCR-related underdetection bias with the hybrid enzymatic-chemical TET-assisted pyridine borane sequencing approach. Importantly, we show that DM-Seq, unlike bisulfite sequencing, unmasks prognostically important CpGs in a clinical tumor sample by not confounding 5mC with 5-hydroxymethylcytosine. DM-Seq thus offers an all-enzymatic, nondestructive, faithful and direct method for the reading of 5mC alone.


Asunto(s)
5-Metilcitosina , Metilación de ADN , Animales , Citosina , ADN/genética , Análisis de Secuencia de ADN/métodos , Mamíferos/genética
15.
ACS Chem Biol ; 18(10): 2224-2232, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37379458

RESUMEN

Methylation of DNA plays a key role in diverse biological processes spanning from bacteria to mammals. DNA methyltransferases (MTases) typically employ S-adenosyl-l-methionine (SAM) as a critical cosubstrate and the relevant methyl donor for modification of the C5 position of cytosine. Recently, work on the CpG-specific bacterial MTase, M.MpeI, has shown that a single N374K point mutation can confer the enzyme with the neomorphic ability to use the sparse, naturally occurring metabolite carboxy-S-adenosyl-l-methionine (CxSAM) in order to generate the unnatural DNA modification, 5-carboxymethylcytosine (5cxmC). Here, we aimed to investigate the mechanistic basis for this DNA carboxymethyltransferase (CxMTase) activity by employing a combination of computational modeling and in vitro characterization. Modeling of substrate interactions with the enzyme variant allowed us to identify a favorable salt bridge between CxSAM and N374K that helps to rationalize selectivity of the CxMTase. Unexpectedly, we also discovered a potential role for a key active site E45 residue that makes a bidentate interaction with the ribosyl sugar of CxSAM, located on the opposite face of the CxMTase active site. Prompted by these modeling results, we further explored the space-opening E45D mutation and found that the E45D/N374K double mutant in fact inverts selectivity, preferring CxSAM over SAM in biochemical assays. These findings provide new insight into CxMTase active site architecture and may offer broader utility given the numerous opportunities offered by using SAM analogs for selective molecular labeling in concert with nucleic acid or even protein-modifying MTases.


Asunto(s)
Metiltransferasas , S-Adenosilmetionina , Animales , Metiltransferasas/metabolismo , S-Adenosilmetionina/metabolismo , Metilasas de Modificación del ADN/metabolismo , Metilación de ADN , ADN/química , Mamíferos/metabolismo
16.
Trends Pharmacol Sci ; 44(9): 555-557, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37328396

RESUMEN

CRISPR tiling screens offer an efficient way to identify gain-of-function mutations in targets of cancer therapy. Recently, by utilizing these screens, Kwok et al. unexpectedly discovered mutations conferring drug addiction in lymphoma, revealing a requirement for a 'just right' window of histone methylation crucial for cancer survival.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Neoplasias , Humanos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Neoplasias/genética , Epigenómica , Epigénesis Genética , Sistemas CRISPR-Cas
17.
Protein Sci ; 32(5): e4633, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36974585

RESUMEN

Förster resonance energy transfer (FRET) is a valuable method for monitoring protein conformation and biomolecular interactions. Intrinsically fluorescent amino acids that can be genetically encoded, such as acridonylalanine (Acd), are particularly useful for FRET studies. However, quantitative interpretation of FRET data to derive distance information requires careful use of controls and consideration of photophysical effects. Here we present two case studies illustrating how Acd can be used in FRET experiments to study small molecule induced conformational changes and multicomponent biomolecular complexes.


Asunto(s)
Aminoácidos , Transferencia Resonante de Energía de Fluorescencia , Aminoácidos/genética , Aminoácidos/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Conformación Proteica
18.
bioRxiv ; 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36865267

RESUMEN

DNA methylation erasure is required for mammalian primordial germ cell reprogramming. TET enzymes iteratively oxidize 5-methylcytosine to generate 5-hyroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxycytosine to facilitate active genome demethylation. Whether these bases are required to promote replication-coupled dilution or activate base excision repair during germline reprogramming remains unresolved due to the lack of genetic models that decouple TET activities. Here, we generated two mouse lines expressing catalytically inactive TET1 ( Tet1-HxD ) and TET1 that stalls oxidation at 5hmC ( Tet1-V ). Tet1 -/- , Tet1 V/V , and Tet1 HxD/HxD sperm methylomes show that TET1 V and TET1 HxD rescue most Tet1 -/- hypermethylated regions, demonstrating the importance of TET1’s extra-catalytic functions. Imprinted regions, in contrast, require iterative oxidation. We further reveal a broader class of hypermethylated regions in sperm of Tet1 mutant mice that are excluded from de novo methylation during male germline development and depend on TET oxidation for reprogramming. Our study underscores the link between TET1-mediated demethylation during reprogramming and sperm methylome patterning.

19.
J Infect Dis ; 227(6): 828-830, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36481811

RESUMEN

The recent mpox (monkeypox) outbreak has prompted genomic studies to track global spread of the disease. These studies have also revealed unexpected patterns of mutations that implicate the action of the immune defense APOBEC3 family of enzymes, which catalyze conversion of cytosine (C) to uracil (U) in DNA, in viral evolution. As poxviruses have conventionally been regarded as slow-evolving viruses, the rapid emergence of APOBEC3 mutational signatures begs a series of important and open questions regarding how host-pathogen interactions may have changed and whether these mutations are bystanders or have roles in pathogenesis.


Asunto(s)
Mpox , Virus , Humanos , Citidina Desaminasa/genética , Virus/genética , ADN , Mutación
20.
Biochemistry ; 61(24): 2884-2896, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36473084

RESUMEN

The SOS response is a bacterial DNA damage response pathway that has been heavily implicated in bacteria's ability to evolve resistance to antibiotics. Activation of the SOS response is dependent on the interaction between two bacterial proteins, RecA and LexA. RecA acts as a DNA damage sensor by forming lengthy oligomeric filaments (RecA*) along single-stranded DNA (ssDNA) in an ATP-dependent manner. RecA* can then bind to LexA, the repressor of SOS response genes, triggering LexA degradation and leading to induction of the SOS response. Formation of the RecA*-LexA complex therefore serves as the key "SOS activation signal." Given the challenges associated with studying a complex involving multiple macromolecular interactions, the essential constituents of RecA* that allow LexA cleavage are not well defined. Here, we leverage head-to-tail linked and end-capped RecA constructs as tools to define the minimal RecA* filament that can engage LexA. In contrast to previously postulated models, we found that as few as three linked RecA units are capable of ssDNA binding, LexA binding, and LexA cleavage. We further demonstrate that RecA oligomerization alone is insufficient for LexA cleavage, with an obligate requirement for ATP and ssDNA binding to form a competent SOS activation signal with the linked constructs. Our minimal system for RecA* highlights the limitations of prior models for the SOS activation signal and offers a novel tool that can inform efforts to slow acquired antibiotic resistance by targeting the SOS response.


Asunto(s)
Proteínas Bacterianas , Respuesta SOS en Genética , Proteínas Bacterianas/química , Bacterias/metabolismo , Daño del ADN , Adenosina Trifosfato , Rec A Recombinasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA