Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39063235

RESUMEN

Among the symptoms of Parkinson's disease (PD), apathy comprises a set of behavioral, affective, and cognitive features that can be classified into several subtypes. However, the pathophysiology and brain regions that are involved in these different apathy subtypes are still poorly characterized. We examined which subtype of apathy is elicited in a mouse model of PD with 6-hydroxydopamine (6-OHDA) lesions and the behavioral symptoms that are exhibited. Male C57/BL6J mice were allocated to sham (n = 8) and 6-OHDA (n = 13) groups and locally injected with saline or 4 µg 6-OHDA bilaterally in the dorsal striatum. We then conducted motor performance tests and apathy-related behavioral experiments. We then pathologically evaluated tyrosine hydroxylase (TH) immunostaining. The 6-OHDA group exhibited significant impairments in motor function. In the behavioral tests of apathy, significant differences were observed between the sham and 6-OHDA groups in the hole-board test and novelty-suppressed feeding test. The 6-OHDA group exhibited impairments in inanimate novel object preference, whereas social preference was maintained in the three-chamber test. The number of TH+ pixels in the caudate putamen and substantia nigra compacta was significantly reduced in the 6-OHDA group. The present mouse model of PD predominantly showed dorsal striatum dopaminergic neuronal loss and a decrease in novelty seeking as a symptom that is related to the cognitive apathy component.


Asunto(s)
Apatía , Conducta Animal , Cuerpo Estriado , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Oxidopamina , Enfermedad de Parkinson , Animales , Oxidopamina/farmacología , Oxidopamina/efectos adversos , Apatía/efectos de los fármacos , Masculino , Ratones , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Cuerpo Estriado/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología , Conducta Animal/efectos de los fármacos , Cognición/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo , Actividad Motora/efectos de los fármacos
2.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38203854

RESUMEN

Mutations in the GBA1 gene increase the risk of developing Parkinson's disease (PD). However, most carriers of GBA1 mutations do not develop PD throughout their lives. The mechanisms of how GBA1 mutations contribute to PD pathogenesis remain unclear. Cerebrospinal fluid (CSF) is used for detecting pathological conditions of diseases, providing insights into the molecular mechanisms underlying neurodegenerative disorders. In this study, we utilized the proximity extension assay to examine the levels of metabolism-linked protein in the CSF from 17 PD patients carrying GBA1 mutations (GBA1-PD) and 17 idiopathic PD (iPD). The analysis of CSF secretome in GBA1-PD identified 11 significantly altered proteins, namely FKBP4, THOP1, GLRX, TXNDC5, GAL, SEMA3F, CRKL, APLP1, LRP11, CD164, and NPTXR. To investigate GBA1-associated CSF changes attributed to specific neuronal subtypes responsible for PD, we analyzed the cell culture supernatant from GBA1-PD-induced pluripotent stem cell (iPSC)-derived midbrain dopaminergic (mDA) neurons. The secretome analysis of GBA1-PD iPSC-derived mDA neurons revealed that five differently regulated proteins overlapped with those identified in the CSF analysis: FKBP4, THOP1, GLRX, GAL, and CRKL. Reduced intracellular level of the top hit, FKPB4, was confirmed via Western Blot. In conclusion, our findings identify significantly altered CSF GBA1-PD-associated proteins with FKPB4 being firmly attributed to mDA neurons.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Proteínas de Unión a Tacrolimus , Humanos , Proteínas del Líquido Cefalorraquídeo , Proteínas de la Membrana , Mutación , Proteínas del Tejido Nervioso , Enfermedad de Parkinson/genética , Proteína Disulfuro Isomerasas , Secretoma , Proteínas de Unión a Tacrolimus/genética
3.
J Psychiatr Res ; 163: 74-79, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37207434

RESUMEN

Schizophrenia (SZ) and bipolar disorder (BD), which are both psychiatric disorders, share some common clinical evidence. We recently discovered that brain capillary angiopathy is another common feature of these psychiatric disorders using fibrin accumulation in vascular endothelial cells as an indicator. This study aimed to characterize the similarities and differences in cerebral capillary injuries in various brain diseases to provide new diagnostic methods for SZ and BD and to develop new therapeutic strategies. We evaluated whether discrepancies exist in the degree of vascular damage among SZ and BD and other brain disorders (amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD)) using postmortem brains. Our results demonstrate that fibrin was strongly accumulated in the capillaries of the grey matter (GM) of brains of patients with SZ and AD and in the capillaries of the white matter (WM) in those of patients with SZ, BD, and AD when compared with control subjects without any psychiatric or neurological disease history. However, ALS and PD brains did not present a significant increase in the amount of accumulated fibrin, either in the capillaries of WM or GM. Furthermore, significant leakage of fibrin into the brain parenchyma, indicating a vascular physical disruption, was observed in the brains of patients with AD but not in the brains of other patients compared with control subjects. In conclusion, our work reveals that Fibrin-accumulation in the brain capillaries are observed in psychiatric disorders, such as SZ, BD, and AD. Furthermore, fibrin-accumulating, nonbreaking type angiopathy is characteristic of SZ and BD, even though there are regional differences between these diseases.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Trastorno Bipolar , Lesiones Traumáticas del Encéfalo , Esquizofrenia , Humanos , Trastorno Bipolar/complicaciones , Esquizofrenia/complicaciones , Enfermedad de Alzheimer/complicaciones , Capilares , Células Endoteliales , Encéfalo
4.
J Mol Neurosci ; 72(11): 2313-2325, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36152140

RESUMEN

Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder affecting over 1% of the 65 + age population. Saposin C, a lysosomal protein required for the normal activity of glucocerebrosidase (GCase), may serve as a disease modifier in PD. Saposin C is cleaved from its precursor, Prosaposin (PSAP), which is secreted as an uncleaved protein and exerts neuroprotective effects. In this study, we aim to elucidate the neuroprotective roles of PSAP and saposin C in PD by evaluating their effects on α-synuclein accumulation in human neuroblastoma cells. Stable overexpression of PSAP reduced monomeric α-synuclein levels in SH-SY5Y cells, while PSAP knockdown by small interfering RNA led to the opposite effect, and those effects were independent of GCase activity. Autophagy flux was decreased by stable PSAP overexpression. Furthermore, a flow-through assay revealed that recombinant saposin C was able to detach α-synuclein from artificial glucosylceramide-enriched lipid membranes at the lysosomal pH. Taken together, our findings provide further evidence that PSAP and saposin C as key proteins involved in α-synuclein clearance by dislodging it from lipid membranes.


Asunto(s)
Neuroblastoma , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , Saposinas/genética , Glucosilceramidas/farmacología
5.
Sci Adv ; 6(51)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33328229

RESUMEN

Circadian gene expression driven by transcription activators CLOCK and BMAL1 is intimately associated with dynamic chromatin remodeling. However, how cellular metabolism directs circadian chromatin remodeling is virtually unexplored. We report that the S-adenosylhomocysteine (SAH) hydrolyzing enzyme adenosylhomocysteinase (AHCY) cyclically associates to CLOCK-BMAL1 at chromatin sites and promotes circadian transcriptional activity. SAH is a potent feedback inhibitor of S-adenosylmethionine (SAM)-dependent methyltransferases, and timely hydrolysis of SAH by AHCY is critical to sustain methylation reactions. We show that AHCY is essential for cyclic H3K4 trimethylation, genome-wide recruitment of BMAL1 to chromatin, and subsequent circadian transcription. Depletion or targeted pharmacological inhibition of AHCY in mammalian cells markedly decreases the amplitude of circadian gene expression. In mice, pharmacological inhibition of AHCY in the hypothalamus alters circadian locomotor activity and rhythmic transcription within the suprachiasmatic nucleus. These results reveal a previously unappreciated connection between cellular metabolism, chromatin dynamics, and circadian regulation.


Asunto(s)
Adenosilhomocisteinasa , Ensamble y Desensamble de Cromatina , Relojes Circadianos , Metionina , Factores de Transcripción ARNTL/genética , Adenosilhomocisteinasa/genética , Adenosilhomocisteinasa/metabolismo , Animales , Proteínas CLOCK , Cromatina , Ritmo Circadiano/genética , Metionina/metabolismo , Ratones , S-Adenosilhomocisteína/metabolismo
7.
Commun Biol ; 3(1): 211, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32376902

RESUMEN

The methyl cycle is a universal metabolic pathway providing methyl groups for the methylation of nuclei acids and proteins, regulating all aspects of cellular physiology. We have previously shown that methyl cycle inhibition in mammals strongly affects circadian rhythms. Since the methyl cycle and circadian clocks have evolved early during evolution and operate in organisms across the tree of life, we sought to determine whether the link between the two is also conserved. Here, we show that methyl cycle inhibition affects biological rhythms in species ranging from unicellular algae to humans, separated by more than 1 billion years of evolution. In contrast, the cyanobacterial clock is resistant to methyl cycle inhibition, although we demonstrate that methylations themselves regulate circadian rhythms in this organism. Mammalian cells with a rewired bacteria-like methyl cycle are protected, like cyanobacteria, from methyl cycle inhibition, providing interesting new possibilities for the treatment of methylation deficiencies.


Asunto(s)
Ritmo Circadiano , Metilación , Animales , Arabidopsis/fisiología , Caenorhabditis elegans/fisiología , Chlamydomonas reinhardtii/fisiología , Chlorophyta/fisiología , Drosophila melanogaster/fisiología , Humanos , Ratones/fisiología , Synechococcus/fisiología , Pez Cebra/fisiología
8.
Proc Natl Acad Sci U S A ; 115(23): 5980-5985, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29784786

RESUMEN

The N6-methylation of internal adenosines (m6A) in mRNA has been quantified and localized throughout the transcriptome. However, the physiological significance of m6A in most highly methylated mRNAs is unknown. It was demonstrated previously that the circadian clock, based on transcription-translation negative feedback loops, is sensitive to the general inhibition of m6A. Here, we show that the Casein Kinase 1 Delta mRNA (Ck1δ), coding for a critical kinase in the control of circadian rhythms, cellular growth, and survival, is negatively regulated by m6A. Inhibition of Ck1δ mRNA methylation leads to increased translation of two alternatively spliced CK1δ isoforms, CK1δ1 and CK1δ2, uncharacterized until now. The expression ratio between these isoforms is tissue-specific, CK1δ1 and CK1δ2 have different kinase activities, and they cooperate in the phosphorylation of the circadian clock protein PER2. While CK1δ1 accelerates the circadian clock by promoting the decay of PER2 proteins, CK1δ2 slows it down by stabilizing PER2 via increased phosphorylation at a key residue on PER2 protein. These observations challenge the previously established model of PER2 phosphorylation and, given the multiple functions and targets of CK1δ, the existence of two isoforms calls for a re-evaluation of past research when CK1δ1 and CK1δ2 were simply CK1δ.


Asunto(s)
Quinasa Idelta de la Caseína/genética , Relojes Circadianos/genética , Metilación , Metiltransferasas/genética , ARN Mensajero/genética , Animales , Quinasa Idelta de la Caseína/metabolismo , Masculino , Metiltransferasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Isoformas de Proteínas , Empalme del ARN/genética , ARN Mensajero/metabolismo
9.
J Nat Med ; 72(2): 593, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29497900

RESUMEN

The article Comparison of glycyrrhizin content in 25 major kinds of Kampo extracts containing Glycyrrhizae Radix used clinically in Japan, written by Mitsuhiko Nose, Momoka Tada, Rika Kojima, Kumiko Nagata, Shinsuke Hisaka, Sayaka Masada, Masato Homma and Takashi Hakamatsuka, was originally published Online First without open access. After publication in volume 71, issue 4, page 711-722 the author decided to opt for Open Choice and to make the article an open access publication. Therefore, the copyright of the article has been changed to

10.
J Nat Med ; 71(4): 711-722, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28608269

RESUMEN

Glycyrrhizae Radix is the most frequently used crude drug in Japan and is prescribed in Kampo medicine for the treatment of a wide range of diseases. The major active ingredient of Glycyrrhizae Radix, glycyrrhizin (GL), has been shown to possess various pharmacological actions, but is also known to cause adverse effects such as pseudoaldosteronism. To avoid the adverse effects of GL, precautions have been indicated on the package inserts of Glycyrrhizae Radix-containing formulas depending on the amount of Glycyrrhizae Radix they contain. However, it remains unknown whether the extraction efficiency of GL from Glycyrrhizae Radix is constant throughout the different combinations of crude drugs in Glycyrrhizae Radix-containing formulas. To confirm the basis of the safety regulation, in this study we comprehensively determined the GL content of 25 major kinds of Kampo extracts compounding Glycyrrhizae Radix. We found that the GL content per daily dosage in all Kampo extracts are generally proportional to the compounding amount of Glycyrrhizae Radix, except in the case of shoseiryuto (Sho-seiryu-To). We also found that Schisandrae Fructus in Sho-seiryu-To decoction caused a lowered pH condition and drastically decreased the extraction efficacy of GL from Glycyrrhizae Radix. Moreover, we were able to confirm that the extraction efficiency of GL from Glycyrrhizae Radix is dependent on the pH value of the extraction solvent. The extraction efficiency of GL in the 25 kinds of Kampo extracts was not constant but it correlates significantly with the pH value of the decoction. Furthermore, the GL contents are well correlated with pseudoaldosteronism incidence data obtained from the Japanese Adverse Drug Event Report (JADER) database on the 25 kinds of Kampo extracts. This suggests that the GL content is a better index to consider to avoid the adverse effects of Glycyrrhizae Radix-containing Kampo formulas.


Asunto(s)
Ácido Glicirrínico/uso terapéutico , Medicina Kampo/métodos , Extractos Vegetales/uso terapéutico , Ácido Glicirrínico/administración & dosificación , Ácido Glicirrínico/farmacología , Japón , Extractos Vegetales/farmacología
11.
Hypertens Res ; 39(10): 681-687, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27439492

RESUMEN

With the current societal norm of shiftwork and long working hours, maintaining a stable daily life is becoming very difficult. An irregular lifestyle disrupts circadian rhythms, resulting in the malfunction of body physiology and ultimately leading to lifestyle-related diseases, including hypertension. By analyzing completely arrhythmic Cry1/Cry2 double-knockout (Cry-null) mice, we found salt-sensitive hypertension accompanied by hyperaldosteronism. On the basis of a DNA microarray analysis of the adrenal gland and subsequent biochemical analyses, we discovered that Hsd3b6/HSD3B1, a subtype of 3ß-HSD, is markedly overexpressed in aldosterone-producing cells in the Cry-null adrenal cortex. In addition, we found that Hsd3b6/HSD3B1, which converts pregnenolone to progesterone, is a clock-controlled gene and might also be a key enzyme for the regulation of aldosterone biosynthesis, in addition to the previously established CYP11B2, which synthesizes aldosterone from deoxycorticosterone. Importantly, angiotensin II induces HSD3B1 via the transcription factor NGFIB in human adrenocortical H295R cells, similarly to CYP11B2. As HSD3B1 levels are abnormally high in the adrenal aldosterone-producing cells of idiopathic hyperaldosteronism (IHA), the temporal component of this system in the pathophysiology of IHA is a promising area for future research.


Asunto(s)
3-Hidroxiesteroide Deshidrogenasas/genética , Aldosterona/biosíntesis , Angiotensina II/metabolismo , Proteínas CLOCK/genética , Relojes Circadianos/fisiología , Hiperaldosteronismo/metabolismo , Hipertensión/metabolismo , Cloruro de Sodio Dietético , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Animales , Ritmo Circadiano/fisiología , Hiperaldosteronismo/genética , Hiperaldosteronismo/fisiopatología , Hipertensión/genética , Hipertensión/fisiopatología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA