Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Brain Stimul ; 15(5): 1153-1162, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35988862

RESUMEN

BACKGROUND AND OBJECTIVE: Transcranial direct current stimulation (tDCS) has wide ranging applications in neuro-behavioural and physiological research, and in neurological rehabilitation. However, it is currently limited by substantial inter-subject variability in responses, which may be explained, at least in part, by anatomical differences that lead to variability in the electric field (E-field) induced in the cortex. Here, we tested whether the variability in the E-field in the stimulated cortex during anodal tDCS, estimated using computational simulations, explains the variability in tDCS induced changes in GABA, a neurophysiological marker of stimulation effect. METHODS: Data from five previously conducted MRS studies were combined. The anode was placed over the left primary motor cortex (M1, 3 studies, N = 24) or right temporal cortex (2 studies, N = 32), with the cathode over the contralateral supraorbital ridge. Single voxel spectroscopy was performed in a 2x2x2cm voxel under the anode in all cases. MRS data were acquired before and either during or after 1 mA tDCS using either a sLASER sequence (7T) or a MEGA-PRESS sequence (3T). sLASER MRS data were analysed using LCModel, and MEGA-PRESS using FID-A and Gannet. E-fields were simulated in a finite element model of the head, based on individual structural MR images, using SimNIBS. Separate linear mixed effects models were run for each E-field variable (mean and 95th percentile; magnitude, and components normal and tangential to grey matter surface, within the MRS voxel). The model included effects of time (pre or post tDCS), E-field, grey matter volume in the MRS voxel, and a 3-way interaction between time, E-field and grey matter volume. Additionally, we ran a permutation analysis using PALM to determine whether E-field anywhere in the brain, not just in the MRS voxel, correlated with GABA change. RESULTS: In M1, higher mean E-field magnitude was associated with greater anodal tDCS-induced decreases in GABA (t(24) = 3.24, p = 0.003). Further, the association between mean E-field magnitude and GABA change was moderated by the grey matter volume in the MRS voxel (t(24) = -3.55, p = 0.002). These relationships were consistent across all E-field variables except the mean of the normal component. No significant relationship was found between tDCS-induced GABA decrease and E-field in the temporal voxel. No significant clusters were found in the whole brain analysis. CONCLUSIONS: Our data suggest that the electric field induced by tDCS within the brain is variable, and is significantly related to anodal tDCS-induced decrease in GABA, a key neurophysiological marker of stimulation. These findings strongly support individualised dosing of tDCS, at least in M1. Further studies examining E-fields in relation to other outcome measures, including behaviour, will help determine the optimal E-fields required for any desired effects.


Asunto(s)
Corteza Motora , Estimulación Transcraneal de Corriente Directa , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Corteza Motora/diagnóstico por imagen , Corteza Motora/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Ácido gamma-Aminobutírico
2.
Nat Commun ; 13(1): 4253, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869067

RESUMEN

Myelination has been increasingly implicated in the function and dysfunction of the adult human brain. Although it is known that axon myelination shapes axon physiology in animal models, it is unclear whether a similar principle applies in the living human brain, and at the level of whole axon bundles in white matter tracts. Here, we hypothesised that in humans, cortico-cortical interactions between two brain areas may be shaped by the amount of myelin in the white matter tract connecting them. As a test bed for this hypothesis, we use a well-defined interhemispheric premotor-to-motor circuit. We combined TMS-derived physiological measures of cortico-cortical interactions during action reprogramming with multimodal myelin markers (MT, R1, R2* and FA), in a large cohort of healthy subjects. We found that physiological metrics of premotor-to-motor interaction are broadly associated with multiple myelin markers, suggesting interindividual differences in tract myelination may play a role in motor network physiology. Moreover, we also demonstrate that myelination metrics link indirectly to action switching by influencing local primary motor cortex dynamics. These findings suggest that myelination levels in white matter tracts may influence millisecond-level cortico-cortical interactions during tasks. They also unveil a link between the physiology of the motor network and the myelination of tracts connecting its components, and provide a putative mechanism mediating the relationship between brain myelination and human behaviour.


Asunto(s)
Sustancia Blanca , Adulto , Animales , Axones , Encéfalo , Mapeo Encefálico , Humanos , Vaina de Mielina
3.
Cortex ; 142: 221-236, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34280867

RESUMEN

Many emerging technologies are attempting to leverage the tactile domain to convey complex spatiotemporal information translated directly from the visual domain, such as shape and motion. Despite the intuitive appeal of touch for communication, we do not know to what extent the hand can substitute for the retina in this way. Here we ask whether the tactile system can be used to perceive complex whole hand motion stimuli, and whether it exhibits the same kind of established perceptual biases as reported in the visual domain. Using ultrasound stimulation, we were able to project complex moving dot percepts onto the palm in mid-air, over 30 cm above an emitter device. We generated dot kinetogram stimuli involving motion in three different directional axes ('Horizontal', 'Vertical', and 'Oblique') on the ventral surface of the hand. Using Bayesian statistics, we found clear evidence that participants were able to discriminate tactile motion direction. Furthermore, there was a marked directional bias in motion perception: participants were both better and more confident at discriminating motion in the vertical and horizontal axes of the hand, compared to those stimuli moving obliquely. This pattern directly mirrors the perceptional biases that have been robustly reported in the visual field, termed the 'Oblique Effect'. These data demonstrate the existence of biases in motion perception that transcend sensory modality. Furthermore, we extend the Oblique Effect to a whole hand scale, using motion stimuli presented on the broad and relatively low acuity surface of the palm, away from the densely innervated and much studied fingertips. These findings highlight targeted ultrasound stimulation as a versatile method to convey potentially complex spatial and temporal information without the need for a user to wear or touch a device.


Asunto(s)
Percepción de Movimiento , Percepción del Tacto , Teorema de Bayes , Sesgo , Mano , Humanos , Estimulación Luminosa , Tacto
4.
J Physiol ; 599(8): 2255-2272, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33675033

RESUMEN

KEY POINTS: Massive irreparable rotator cuff tear was used as a model to study the impact of chronic pain and motor impairment on the motor systems of the human brain using magnetic resonance imaging. Patients show markers of lower grey/white matter integrity and lower functional connectivity compared with control participants in regions responsible for movement and the perception of visual movement and body shape. An independent cohort of patients showed relative deficits in the perception of visual motion and hand laterality compared with an age-matched control group. These data support the hypothesis that the structure and function of the motor control system differs in patients who have experienced chronic motor impairment. This work also raises a new hypothesis, supported by neuroimaging and behaviour, that a loss of motor function could also be associated with off-target effects, namely a reduced ability to perceive motion and body form. ABSTRACT: Changes in the way we move can induce changes in the brain, yet we know little of such plasticity in relation to musculoskeletal diseases. Here we use massive irreparable rotator cuff tear as a model to study the impact of chronic motor impairment and pain on the human brain. Cuff tear destabilises the shoulder, impairing upper-limb function in overhead and load-bearing tasks. We used neuroimaging and behavioural testing to investigate how brain structure and function differed in cuff tear patients and controls (imaging: 21 patients, age 76.3 ± 7.68; 18 controls, age 74.9 ± 6.59; behaviour: 13 patients, age 75.5 ± 10.2; 11 controls, age 73.4 ± 5.01). We observed lower grey matter density and cortical thickness in cuff tear patients in the postcentral gyrus, inferior parietal lobule, temporal-parietal junction and the pulvinar - areas implicated in somatosensation, reach/grasp and body form perception. In patients we also observed lower functional connectivity between the motor network and the middle temporal visual cortex (MT), a region involved in visual motion perception. Lower white matter integrity was observed in patients in the inferior fronto-occipital/longitudinal fasciculi. We investigated the cognitive domains associated with the brain regions identified. Patients exhibited relative impairment in visual body judgements and the perception of biological/global motion. These data support our initial hypothesis that cuff tear is associated with differences in the brain's motor control regions in comparison with unaffected individuals. Moreover, our combination of neuroimaging and behavioural data raises a new hypothesis that chronic motor impairment is associated with an altered perception of visual motion and body form.


Asunto(s)
Encéfalo , Sustancia Blanca , Anciano , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Movimiento , Rotura
5.
Cereb Cortex Commun ; 1(1): tgaa009, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32864612

RESUMEN

The organizing principle of human motor cortex does not follow an anatomical body map, but rather a distributed representational structure in which motor primitives are combined to produce motor outputs. Electrophysiological recordings in primates and human imaging data suggest that M1 encodes kinematic features of movements, such as joint position and velocity. However, M1 exhibits well-documented sensory responses to cutaneous and proprioceptive stimuli, raising questions regarding the origins of kinematic motor representations: are they relevant in top-down motor control, or are they an epiphenomenon of bottom-up sensory feedback during movement? Here we provide evidence for spatially and temporally distinct encoding of kinematic and muscle information in human M1 during the production of a wide variety of naturalistic hand movements. Using a powerful combination of high-field functional magnetic resonance imaging and magnetoencephalography, a spatial and temporal multivariate representational similarity analysis revealed encoding of kinematic information in more caudal regions of M1, over 200 ms before movement onset. In contrast, patterns of muscle activity were encoded in more rostral motor regions much later after movements began. We provide compelling evidence that top-down control of dexterous movement engages kinematic representations in caudal regions of M1 prior to movement production.

6.
Hum Brain Mapp ; 40(15): 4417-4431, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31355989

RESUMEN

To investigate whether the observed anisotropic diffusion in cerebral cortex may reflect its columnar cytoarchitecture and myeloarchitecture, as a potential biomarker for disease-related changes, we compared postmortem diffusion magnetic resonance imaging scans of nine multiple sclerosis brains with histology measures from the same regions. Histology measurements assessed the cortical minicolumnar structure based on cell bodies and associated axon bundles in dorsolateral prefrontal cortex (Area 9), Heschl's gyrus (Area 41), and primary visual cortex (V1). Diffusivity measures included mean diffusivity, fractional anisotropy of the cortex, and three specific measures that may relate to the radial minicolumn structure: the angle of the principal diffusion direction in the cortex, the component that was perpendicular to the radial direction, and the component that was parallel to the radial direction. The cellular minicolumn microcircuit features were correlated with diffusion angle in Areas 9 and 41, and the axon bundle features were correlated with angle in Area 9 and to the parallel component in V1 cortex. This may reflect the effect of minicolumn microcircuit organisation on diffusion in the cortex, due to the number of coherently arranged membranes and myelinated structures. Several of the cortical diffusion measures showed group differences between MS brains and control brains. Differences between brain regions were also found in histology and diffusivity measurements consistent with established regional variation in cytoarchitecture and myeloarchitecture. Therefore, these novel measures may provide a surrogate of cortical organisation as a potential biomarker, which is particularly relevant for detecting regional changes in neurological disorders.

7.
Front Hum Neurosci ; 13: 422, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31920586

RESUMEN

Limb apraxia is a syndrome often observed after stroke that affects the ability to perform skilled actions despite intact elementary motor and sensory systems. In a large cohort of unselected stroke patients with lesions to the left, right, and bilateral hemispheres, we used voxel-based lesion-symptom mapping (VLSM) on clinical CT head images to identify the neuroanatomical correlates of the impairment of performance in three tasks investigating praxis skills in patient populations. These included a meaningless gesture imitation task, a gesture production task involving pantomiming transitive and intransitive gestures, and a gesture recognition task involving recognition of these same categories of gestures. Neocortical lesions associated with poor performance in these tasks were all in the left hemisphere. They involved the pre-striate and medial temporal cortices, the superior temporal sulcus, inferior parietal area PGi, the superior longitudinal fasciculus underlying the primary motor cortex, and the uncinate fasciculus, subserving connections between temporal and frontal regions. No significant lesions were identified when language deficits, as indicated via a picture naming task, were controlled for. The implication of the superior temporal sulcus and the anatomically connected prestriate and inferior parietal regions challenges traditional models of the disorder. The network identified has been implicated in studies of action observation, which might share cognitive functions sub-serving praxis and language skills.

8.
J Physiol ; 597(1): 271-282, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30300446

RESUMEN

KEY POINTS: The ability to learn new motor skills is supported by plasticity in the structural and functional organisation of the primary motor cortex in the human brain. Changes inhibitory to signalling by GABA are thought to be crucial in inducing motor cortex plasticity. This study used magnetic resonance spectroscopy (MRS) to quantify the concentration of GABA in human motor cortex during a period of motor learning, as well as during a period of movement and a period at rest. We report evidence for a reduction in the MRS-measured concentration of GABA specific to learning. Further, the GABA concentration early in the learning task was strongly correlated with the magnitude of subsequent learning: higher GABA concentrations were associated with poorer learning. The results provide initial insight into the neurochemical correlates of cortical plasticity associated with motor learning, specifically relevant in therapeutic efforts to induce cortical plasticity during recovery from stroke. ABSTRACT: The ability to learn novel motor skills is a central part of our daily lives and can provide a model for rehabilitation after a stroke. However, there are still fundamental gaps in our understanding of the physiological mechanisms that underpin human motor plasticity. The acquisition of new motor skills is dependent on changes in local circuitry within the primary motor cortex (M1). This reorganisation has been hypothesised to be facilitated by a decrease in local inhibition via modulation of the neurotransmitter GABA, but this link has not been conclusively demonstrated in humans. Here, we used 7 T magnetic resonance spectroscopy to investigate the dynamics of GABA concentrations in human M1 during the learning of an explicit, serial reaction time task. We observed a significant reduction in GABA concentration during motor learning that was not seen in an equivalent motor task lacking a learnable sequence, nor during a passive resting task of the same duration. No change in glutamate was observed in any group. Furthermore, M1 GABA measured early in task performance was strongly correlated with the degree of subsequent learning, such that greater inhibition was associated with poorer subsequent learning. This result suggests that higher levels of cortical inhibition may present a barrier that must be surmounted in order to achieve an increase in M1 excitability, and hence encoding of a new motor skill. These results provide strong support for the mechanistic role of GABAergic inhibition in motor plasticity, raising questions regarding the link between population variability in motor learning and GABA metabolism in the brain.


Asunto(s)
Aprendizaje/fisiología , Corteza Motora/fisiología , Destreza Motora/fisiología , Ácido gamma-Aminobutírico/fisiología , Adulto , Femenino , Humanos , Movimiento/fisiología , Adulto Joven
9.
Curr Biol ; 27(11): 1685-1691.e3, 2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-28552355

RESUMEN

Understanding both the organization of the human cortex and its relation to the performance of distinct functions is fundamental in neuroscience. The primary sensory cortices display topographic organization, whereby receptive fields follow a characteristic pattern, from tonotopy to retinotopy to somatotopy [1]. GABAergic signaling is vital to the maintenance of cortical receptive fields [2]; however, it is unclear how this fine-grain inhibition relates to measurable patterns of perception [3, 4]. Based on perceptual changes following perturbation of the GABAergic system, it is conceivable that the resting level of cortical GABAergic tone directly relates to the spatial specificity of activation in response to a given input [5-7]. The specificity of cortical activation can be considered in terms of cortical tuning: greater cortical tuning yields more localized recruitment of cortical territory in response to a given input. We applied a combination of fMRI, MR spectroscopy, and psychophysics to substantiate the link between the cortical neurochemical milieu, the tuning of cortical activity, and variability in perceptual acuity, using human somatosensory cortex as a model. We provide data that explain human perceptual acuity in terms of both the underlying cellular and metabolic processes. Specifically, higher concentrations of sensorimotor GABA are associated with more selective cortical tuning, which in turn is associated with enhanced perception. These results show anatomical and neurochemical specificity and are replicated in an independent cohort. The mechanistic link from neurochemistry to perception provides a vital step in understanding population variability in sensory behavior, informing metabolic therapeutic interventions to restore perceptual abilities clinically.


Asunto(s)
Modelos Neurológicos , Percepción/fisiología , Sensación/fisiología , Corteza Somatosensorial/fisiología , Ácido gamma-Aminobutírico/metabolismo , Adulto , Algoritmos , Variación Biológica Poblacional/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Psicofísica , Programas Informáticos , Corteza Somatosensorial/diagnóstico por imagen , Adulto Joven
10.
Elife ; 52016 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-28035900

RESUMEN

Experience-dependent reorganisation of functional maps in the cerebral cortex is well described in the primary sensory cortices. However, there is relatively little evidence for such cortical reorganisation over the short-term. Using human somatosensory cortex as a model, we investigated the effects of a 24 hr gluing manipulation in which the right index and right middle fingers (digits 2 and 3) were adjoined with surgical glue. Somatotopic representations, assessed with two 7 tesla fMRI protocols, revealed rapid off-target reorganisation in the non-manipulated fingers following gluing, with the representation of the ring finger (digit 4) shifted towards the little finger (digit 5) and away from the middle finger (digit 3). These shifts were also evident in two behavioural tasks conducted in an independent cohort, showing reduced sensitivity for discriminating the temporal order of stimuli to the ring and little fingers, and increased substitution errors across this pair on a speeded reaction time task.


Asunto(s)
Mapeo Encefálico/métodos , Potenciales Evocados Somatosensoriales/fisiología , Corteza Somatosensorial/fisiología , Percepción del Tacto/fisiología , Adulto , Femenino , Dedos/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Estimulación Física , Tiempo de Reacción/fisiología , Corteza Somatosensorial/anatomía & histología
11.
Elife ; 52016 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-27552053

RESUMEN

The hand area of the primary somatosensory cortex contains detailed finger topography, thought to be shaped and maintained by daily life experience. Here we utilise phantom sensations and ultra high-field neuroimaging to uncover preserved, though latent, representation of amputees' missing hand. We show that representation of the missing hand's individual fingers persists in the primary somatosensory cortex even decades after arm amputation. By demonstrating stable topography despite amputation, our finding questions the extent to which continued sensory input is necessary to maintain organisation in sensory cortex, thereby reopening the question what happens to a cortical territory once its main input is lost. The discovery of persistent digit topography of amputees' missing hand could be exploited for the development of intuitive and fine-grained control of neuroprosthetics, requiring neural signals of individual digits.

12.
J Neurosci ; 36(4): 1113-27, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26818501

RESUMEN

Studies of human primary somatosensory cortex (S1) have placed a strong emphasis on the cortical representation of the hand and the propensity for plasticity therein. Despite many reports of group differences and experience-dependent changes in cortical digit somatotopy, relatively little work has considered the variability of these maps across individuals and to what extent this detailed functional architecture is dynamic over time. With the advent of 7 T fMRI, it is increasingly feasible to map such detailed organization noninvasively in individual human participants. Here, we extend the ability of ultra-high-field imaging beyond a technological proof of principle to investigate the intersubject variability of digit somatotopy across participants and the stability of this organization across a range of intervals. Using a well validated phase-encoding paradigm and an active task, we demonstrate the presence of highly reproducible maps of individual digits in S1, sharply contrasted by a striking degree of intersubject variability in the shape, extent, and relative position of individual digit representations. Our results demonstrate the presence of very stable fine-grain somatotopy of the digits in human S1 and raise the issue of population variability in such detailed functional architecture of the human brain. These findings have implications for the study of detailed sensorimotor plasticity in the context of both learning and pathological dysfunction. The simple task and 10 min scan required to derive these maps also raises the potential for this paradigm as a tool in the clinical setting. SIGNIFICANCE STATEMENT: We applied ultra-high-resolution fMRI at 7 T to map sensory digit representations in the human primary somatosensory cortex (S1) at the level of individual participants across multiple time points. The resulting fine-grain maps of individual digits in S1 reveal the stability in this fine-grain functional organization over time, contrasted with the variability in these maps across individuals.


Asunto(s)
Mapeo Encefálico , Dedos/inervación , Dedos/fisiología , Desempeño Psicomotor/fisiología , Corteza Somatosensorial/fisiología , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Oxígeno/sangre , Estimulación Física , Corteza Somatosensorial/irrigación sanguínea , Factores de Tiempo , Adulto Joven
13.
Cereb Cortex ; 25(9): 2883-93, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24812082

RESUMEN

Little is known about the emergence of structural asymmetry of white matter tracts during early brain development. We examined whether and when asymmetry in diffusion parameters of limbic and association white matter pathways emerged in humans in 23 brains ranging from 15 gestational weeks (GW) up to 3 years of age (11 ex vivo and 12 in vivo cases) using high-angular resolution diffusion imaging tractography. Age-related development of laterality was not observed in a limbic connectional pathway (cingulum bundle or fornix). Among the studied cortico-cortical association pathways (inferior longitudinal fasciculus [ILF], inferior fronto-occipital fasciculus, and arcuate fasciculus), only the ILF showed development of age-related laterality emerging as early as the second trimester. Comparisons of ages older and younger than 40 GW revealed a leftward asymmetry in the cingulum bundle volume and a rightward asymmetry in apparent diffusion coefficient and leftward asymmetry in fractional anisotropy in the ILF in ages older than 40 GW. These results suggest that morphometric asymmetry in cortical areas precedes the emergence of white matter pathway asymmetry. Future correlative studies will investigate whether such asymmetry is anatomically/genetically driven or associated with functional stimulation.


Asunto(s)
Encéfalo , Lateralidad Funcional/fisiología , Sustancia Blanca , Factores de Edad , Encéfalo/anatomía & histología , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Preescolar , Imagen de Difusión por Resonancia Magnética , Femenino , Feto/anatomía & histología , Edad Gestacional , Humanos , Procesamiento de Imagen Asistido por Computador , Lactante , Recién Nacido , Masculino , Sustancia Blanca/anatomía & histología , Sustancia Blanca/embriología , Sustancia Blanca/crecimiento & desarrollo
14.
Neuroimage ; 79: 412-22, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23672769

RESUMEN

Corticogenesis is underpinned by a complex process of subcortical neuroproliferation, followed by highly orchestrated cellular migration. A greater appreciation of the processes involved in human fetal corticogenesis is vital to gaining an understanding of how developmental disturbances originating in gestation could establish a variety of complex neuropathology manifesting in childhood, or even in adult life. Magnetic resonance imaging modalities offer a unique insight into anatomical structure, and increasingly infer information regarding underlying microstructure in the human brain. In this study we applied a combination of high-resolution structural and diffusion-weighted magnetic resonance imaging to a unique cohort of three post-mortem fetal brain specimens, aged between 19 and 22 post-conceptual weeks. Specifically, we sought to assess patterns of diffusion coherence associated with subcortical neuroproliferative structures: the pallial ventricular/subventricular zone and subpallial ganglionic eminence. Two distinct three-dimensional patterns of diffusion coherence were evident: a clear radial pattern originating in ventricular/subventricular zone, and a tangentio-radial patterns originating in ganglionic eminence. These patterns appeared to regress in a caudo-rostral and lateral-ventral to medial-dorsal direction across the short period of fetal development under study. Our findings demonstrate for the first time distinct patterns of diffusion coherence associated with known anatomical proliferative structures. The radial pattern associated with dorsopallial ventricular/subventricular zone and the tangentio-radial pattern associated with subpallial ganglionic eminence are consistent with reports of radial-glial mediated neuronal migration pathways identified during human corticogenesis, supported by our prior studies of comparative fetal diffusion MRI and histology. The ability to assess such pathways in the fetal brain using MR imaging offers a unique insight into three-dimensional trajectories beyond those visualized using traditional histological techniques. Our results suggest that ex-vivo fetal MRI is a potentially useful modality in understanding normal human development and various disease processes whose etiology may originate in aberrant fetal neuronal migration.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/embriología , Imagen de Difusión Tensora/métodos , Fibras Nerviosas Mielínicas/ultraestructura , Vías Nerviosas/anatomía & histología , Vías Nerviosas/embriología , Encéfalo/crecimiento & desarrollo , Humanos , Modelos Anatómicos , Modelos Neurológicos , Vías Nerviosas/crecimiento & desarrollo
15.
Brain ; 135(Pt 10): 2938-51, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23065787

RESUMEN

Multiple sclerosis is a chronic inflammatory neurological condition characterized by focal and diffuse neurodegeneration and demyelination throughout the central nervous system. Factors influencing the progression of pathology are poorly understood. One hypothesis is that anatomical connectivity influences the spread of neurodegeneration. This predicts that measures of neurodegeneration will correlate most strongly between interconnected structures. However, such patterns have been difficult to quantify through post-mortem neuropathology or in vivo scanning alone. In this study, we used the complementary approaches of whole brain post-mortem magnetic resonance imaging and quantitative histology to assess patterns of multiple sclerosis pathology. Two thalamo-cortical projection systems were considered based on their distinct neuroanatomy and their documented involvement in multiple sclerosis: lateral geniculate nucleus to primary visual cortex and mediodorsal nucleus of the thalamus to prefrontal cortex. Within the anatomically distinct thalamo-cortical projection systems, magnetic resonance imaging derived cortical thickness was correlated significantly with both a measure of myelination in the connected tract and a measure of connected thalamic nucleus cell density. Such correlations did not exist between these markers of neurodegeneration across different thalamo-cortical systems. Magnetic resonance imaging lesion analysis depicted clearly demarcated subcortical lesions impinging on the white matter tracts of interest; however, quantitation of the extent of lesion-tract overlap failed to demonstrate any appreciable association with the severity of markers of diffuse pathology within each thalamo-cortical projection system. Diffusion-weighted magnetic resonance imaging metrics in both white matter tracts were correlated significantly with a histologically derived measure of tract myelination. These data demonstrate for the first time the relevance of functional anatomical connectivity to the spread of multiple sclerosis pathology in a 'tract-specific' pattern. Furthermore, the persisting relationship between metrics from post-mortem diffusion-weighted magnetic resonance imaging and histological measures from fixed tissue further validates the potential of imaging for future neuropathological studies.


Asunto(s)
Encéfalo/patología , Imagen por Resonancia Magnética , Esclerosis Múltiple/patología , Autopsia , Axones/patología , Imagen de Difusión por Resonancia Magnética/instrumentación , Imagen de Difusión por Resonancia Magnética/métodos , Cuerpos Geniculados/patología , Humanos , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Núcleo Talámico Mediodorsal/patología , Enfermedades Neurodegenerativas/patología , Corteza Prefrontal/patología , Tálamo/patología , Corteza Visual/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA